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Abstract

We present high—performance decentralized prefetching protocols for the delivery of
VBR video on demand (VoD) from servers to clients across a packet—switched network.
The protocol gives constant perceptual quality for high link utilizations. It also allows for
immediate commencement of the video upon user request and near instantaneous response
to viewer interactions such as pause, resume and temporal jumps. The protocol requires
that (1) the client has a moderate amount of memory dedicated to the VoD application (2)
the client sends a positive acknowledgment back to the server for each received video frame.
Our decentralized prefetching protocol employs window flow control. A send window limits
the number of frames a server is allowed to send in a frame period. The send window grows
larger than one when the network is underutilized, allowing the server to prefetch future
frames into the client memory. When the network becomes congested the send window
is reduced and the server is throttled. Simulation results based on MPEG encoded traces
show that our decentralized prefetching protocols compare favorably with other prefetching
protocols in the existing literature.
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1 Introduction

We present high—performance decentralized prefetching protocols for the delivery of video on
demand (VoD) from servers to clients across a packet-switched network. The protocol assumes
that the videos are variable-bit-rate (VBR) encoded. Not only does this protocol give constant
perceptual quality for high link utilizations, but it also allows for immediate commencement
of the video upon user request and near instantaneous response to viewer interactions such as
pause, resume and temporal jumps.

To achieve this high performance our protocol has two requirements. First, we require that
each client has a moderate amount of memory dedicated to the VoD application. Second, we
require that each client sends a positive acknowledgement back to its server for each received
video frame. The client could be a television with a set—top box capable of performing buffering
and decoding, or it could be a household PC.

Our protocol explicitly assume that the videos are VBR encoded with high peak—to—mean
ratios. The motivation for our approach is that, for the same perceived video quality, Constant
Bit Rate (CBR) encoding produces an output rate significantly higher than the average rate
of the corresponding VBR encoding for action movies [2]. CBR traffic allows for nearly 100%
link utilization; the number of connections that can be carried over a link of given capacity
is roughly the link capacity divided by the CBR rate (assuming homogeneous connections).
The number of VBR connections that can be transmitted simultaneously is the achievable
link utilization multiplied by the link capacity divided by the average rate of the VBR video
stream. Therefore schemes for transmitting VBR encoded video that achieve high average link
utilizations while keeping losses at a negligible level, can allow for significantly more video
connections than does CBR video.

The traffic management schemes for VBR video in the literature fall into four main cat-
egories: deterministic; deterministic with smoothing and/or prefetching; probabilistic; and
probablistic with collaborative prefetching; see Figure 1. The deterministic schemes send into
the network the original VBR traffic, and admission control ensures that the delays never
exceed a prespecified limit [22] [11] [8]. For highly variable VBR traffic, these deterministic
schemes typically require large initial delays to achieve moderate link utilizations [12]. The
deterministic schemes with prefetching and smoothing do not send the original VBR traffic
into the network, but instead send some smoothed version of it. Several independent research
teams have proposed schemes whereby the server transmits the video at different constant rates
over different intervals; these schemes vary in how the rates and intervals are chosen [6] [20]
[13] [4] [5]. None of the deterministic schemes (with or without prefetching and smoothing)
allows for both high link utilizations (>90%) and consistently high responsiveness (less than a

second) to interactivity.
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Figure 1: Transmission Schemes for VBR Video on Demand.

For the probabilistic approaches, [15] considers sending the original VBR encoded video
into an unbuffered multiplexer. This scheme allows for responsive interactivity, but introduces
packet loss whenever the aggregate transmission rate exceeds the link rate. In [6] and [23]
related ideas are explored whereby the original traffic is first smoothed before it is statistically
multiplexed at an unbuffered link; the statistical multiplexing of the smoothed traffic can
substantially increase link utilization at the expense of small packet loss probabilities. In
particular, in [23] the authors demonstrate that their prefetching scheme, Optimal Smoothing,
can give moderately high link utilizations when it is combined with statistical multiplexing.

A probablistic transmission scheme with collaborative prefetching, Join—-the—Shortest—Queue
(JSQ) prefetching, is presented in [16]. It is shown in [16] that JSQ prefetching has substantially
less packet loss than does Optimal Smoothing for the same link utilization. JSQ prefetching
achieves nearly 100% link utilization, immediate commencement of playback and instantaneous
response to viewer interactions. JSQ prefetching, however, can only be applied when one cen-
tralized server feeds many clients. In this paper we introduce decentralized and collaborative
prefetching protocols that allows the video streams to emanate from multiple distributed and
decentralized servers.

Our decentralized prefetching protocol performs almost as well as as JSQ prefetching: they
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neous response to viewer interactions.

Our decentralized prefetching protocol employs window flow control; it is inspired by the
Transmission Control Protocol (TCP) [7, 1] widely used in the Internet. For simplicity, assume
that each server is responsible for exactly one connection. Admission control ensures that all
link utilizations do not exceed 95%. Our basic decentralized prefetching protocol works roughly
as follows. The server maintains a send window, limiting the number of frames the server is
allowed to send in a frame period. The send window is increased by a small increment when
all acknowledgments arrive in time. Due to admission control and the VBR nature of the
traffic, there are periods of time during which the network is underutilized. The send window
grows larger than one during these periods, allowing the server to prefetch future frames
into the client memory. In times of network congestion, frames are lost or delayed and the
corresponding acknowledgements do not arrive at the server before their timeouts. In this case,
the send window is reduced to throttle the server and alleviate the congestion. The reservoir
of prefetched frames in the client buffer allows the client to continue playback during these
periods of congestion. Starvation at the client occurs only if the reserve of prefetched frames
at the client is completely depleted and the current frame is lost or delayed due to network
congestion. We simulate our protocol in the context of a simple network (see Figure 2). The
simulations are driven by frame size traces of MPEG 1 encoded videos from the public domain
[18]. Our empirical work indicates that starvation at the client rarely occurs for average link
utilizations around 95% and small client buffers.

This paper is organized as follows. In the following subsection we briefly review two impor-
tant on demand delivery schemes for VBR—encoded video. In Section 2 we describe our VoD
architecture. In Section 3 we introduce our decentralized prefetching protocol. In Section 4 we
introduce a number of refinements of the decentralized prefetching protocol. In Section 5 we
present simulation results for our decentralized prefetching protocol. In Section 6 we extend
our decentralized prefetching protocol to allow for priorities and present numerical results for
this modification of the prefetching protocol. In Section 7 we discuss how our client—server
protocol can be used with cable residential access. In Section 8 we conclude and discuss future

work.

1.1 Review of Transmission Schemes for VBR Video on Demand

In this subsection we review two prefetching schemes for VBR video on demand, Join—the—
Shortest—Queue (JSQ) Prefetching [16] and Optimal Smoothing [19, 23, 17]. These two schemes
will be used as benchmarks when evaluating our decentralized prefetching protocol.

The JSQ prefetching protocol is suited for the efficient transmission of VBR encoded videos
from a video server to a large number of clients with moderate memory. The protocol allows

for at most one shared link between the video server and the clients. The policy is based on the



observation that due to the VBR nature of the multiplexed traffic there are frequent periods
of time during which the shared link’s bandwidth is under utilized. During these periods the
server prefetches frames from any of the ongoing connections and sends the prefetched frames
to the buffers in the appropriate clients. The JSQ policy specifies how the server selects the
prefetched frames. The server always selects the next frame from the connection that has
the smallest number of prefetched frames in its client’s buffer. The JSQ prefetching protocol
thus determines the transmission schedule of a connection on—line, as a function of the buffer
contents at all of the clients. For this reason, JSQ is referred to as a collaborative prefetching
scheme.

Optimal Smoothing can be applied when transmitting stored video from a server to a client
with buffering capabilities across a network. Given a specific client buffer size, the optimal
smoothing algorithm determines a “smooth” rate transmission schedule that ensures that the
client buffer neither overflows nor underflows. The algorithm is optimal in that it achieves the
greatest possible reduction in rate variability. Optimal smoothing is non—collaborative; the
transmission schedule is computed before transmission begins and thus does not take the other
ongoing connections into account. Admission control for the optimally smoothed trace can
be based on the peak-rate of the smoothed trace; this ensures lossless transmission. Another
approach is to statistically multiplex the optimally smoothed traces at an unbuffered link and
base admission control on a large deviation estimate of the loss probability [15, 23]. We apply
the latter approach when comparing optimal smoothing with our decentralized prefetching

protocol.

2 Architecture Description

Figure 2 illustrates our basic model for VoD'. The video servers contain videos in mass storage.
For notational simplicity, assume that each video consists of N frames and has a frame rate
of F' frames/sec. The videos are VBR encoded using MPEG 1, MPEG 2 or some other video
compression algorithm. Let J denote the number of video connections in progress. We assume
for the purpose of this study that each video server feeds one client; thus there are J video
servers feeding J clients. In explaining the client—server interaction, we focus on a particular
client—server pair. For simplicity, we assume for the following discussion that each video frame
is transmitted in one packet?. Let z, denote the number of bits in the nth frame. Because the
videos are prerecorded, the sequence (1,9, ...,zy) is fully known before the transmission of
the video. At the beginning of each frame period, that is, every 1/F' seconds, the server decides

according to a prefetching policy, outlined in the next section, which and how many frames to

! Although we discuss our protocol in the context of a single shared link, the protocol applies to arbitrary
networks with multiple shared links.
In our numerical work we assume the more realistic case of fixed size packets.
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Figure 2: Video on Demand Architecture.

=l

transmit. The server sends the frames to the multiplexer buffer. Frames that do not fit into
the multiplexer buffer are lost. The multiplexer buffer of size R/F bit is served at rate R bps.
The maximal delay incurred in the multiplexer is therefore 1/F seconds. For simplicity we
assume that the propagation and processing delays are negligible. The client instantaneously
sends a positive acknowledgment to the server for each frame received.

With these delay assumptions, the server receives acknowledgments for all frames success-
fully received by the client within one frame period. The server therefore knows whether the
frames sent in the previous frame period were received before deciding which frames to send
in the current frame period.

The multiplexer design just described uses a finite buffer of size R/F to ensure that the
multiplexer delay is < 1/F seconds. An alternative implementation with a larger buffer is as
follows. The server timestamps each of the frames it sends. When a frame reaches the front of
the multiplexer buffer, the multiplexer checks to see if the delay of the frame is < 1/F. If the
delay exceeds 1/F, the multiplexer discards the frame. The multiplexer can also periodically
check all the frames in the queue and purge those that have a delay exceeding 1/F.

When a client requests a specific video, the network makes an admission control decision
by deciding whether or not to grant the request. The admission control policy is to accept
connections as long as the average link utilizations are < 95%. The average link utilization is
util = F 23-]:1 Tavg(7)/ R, where zay4(7) is the average frame size in bits of the jth connection,
which is calculated by averaging the corresponding sequence (z1,...,zy). If the network
grants the request, a connection is established and the server immediately begins to transmit
the connection’s frames into the network. The frames arriving at the client are placed in the
client’s prefetch buffer. The video is displayed on the user’s monitor as soon as a few frames

have arrived at the client.



Under normal circumstances, every 1/F seconds the client removes a frame from its buffer,
decompresses it, and displays it. If at one of these epochs there are no complete frames in its
prefetch buffer, the client loses the current frame; the client will try to conceal the loss by, for
instance, redisplaying the previous frame. At the subsequent epoch the client will attempt to

display the next frame of the video.

3 Decentralized Prefetching Protocol

In this section we present our basic decentralized prefetching protocol that allows the server
to determine how many frames to send in each frame period. This protocol strives to (1) make
efficient use of the buffers at the client and (2) avoid bandwidth “hogging” by a particular
connection and thus give each connection a fair share of the bandwidth. The protocol attempts
to allow each client to build up a reservoir of prefetched frames. Although our design allows
for pause and temporal jumps, we will initially exclude these interactive features. We will also
initially assume that the client buffers are infinite.

When discussing the server policy we again focus on a particular connection. We divide
time into slots of length 1/F. Let [ denote the current slot; [ is a local variable maintained by
the server. In the course of the transmission of a video with N frames, [ runs from 1 through
N. We do not assume any synchronization of time slots among the client-server pairs.

Of central importance to our policy is the send window, denoted w;, which limits the
amount of traffic the connection can transmit in slot /. Specifically, the server is allowed to
transmit |w;| frames during slot [. (We assume for simplicity that only complete frames are
transmitted.) A new connection starts with a send window of wy = 1. The send window is
increased by a small increment Aw, say 0.1, at the beginning of each slot, i.e. w; = w;_1+ Aw.
After computing the send window the server transmits |w;| frames; see Figure 3. Note that
w > 2 allows for prefetching of future frames. To keep track of the number of prefetched frames
in the client buffer, let p; be the number of frames in the client buffer at the beginning of slot
l. This variable is initialized to p; = 0. Let a; denote the number of frames that are received
and acknowledged by the client during slot [. Clearly, 0 < a; < |wy]; a; is equal to |w;] if all
frames sent are received by the client. If frames are lost we have a; < |w;|. Figure 3 illustrates
the timing of the prefetching protocol. We assume throughout that multiplexer buffer overflow
is the only source of loss; the switch and interconnecting links are assumed lossless. We also
assume that acknowledgements are never lost. Frame [ is removed from the client buffer at
the end of slot [ if the client buffer contains one or more frames. The server keeps track of p;

through the following recursion:

i1 = [+ a — 17 (1)
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Figure 3: Timing diagram of prefetching policy. Server j places |w;| frames in the multiplexer
buffer at the beginning of slot [. The acknowledgements for a; frames arrive from the client
by the end of slot /. The server processes the acknowledgments and puts |w;1] frames in the
multiplexer buffer at the beginning of slot [ + 1. There is no synchronization of slots between
any distinct servers j and k.

Let s; denote the number of bits received and acknowledged by the the client during slot
l. Let b; be the number of bits in the client buffer at the beginning of slot /; initially, b; = 0.

With the given definitions, the server keeps track of b; through the following recursion:
bipr = [b+ s — @)™ (2)

If the server does not receive a positive acknowledgement for a frame sent at the beginning of
the previous slot within one frame period, it assumes that the frame is lost. If a connection
without any prefetched frames in the client buffer (p; = 0) suffers loss, the client experiences
starvation and may apply error concealment techniques to conceal the loss of video information.
If the client has some prefetched frames in its buffer (p; > 0), the server retransmits the lost
frames. Whenever loss occurs, the server resets its send window to w = 1. The loss of frames
is indicative of acute link overload and by reducing the send window we can throttle the server
and thus alleviate the congestion. We refer to the send window policy described in this section
as the basic window policy. It can be summarized as follows. A connection starts with a send
window of one, that is, wy = 1. The window is increased by a small increment Aw (we use Aw
= 0.1) at the beginning of each frame period. The number of frames a connection is allowed
to send is limited by the integral part of the send window. If loss occurs, the window is reset

to one.



4 Refinements of the Decentralized Prefetching Protocol
4.1 Client Buffer Constraint

We first introduce an important modification of the decentralized prefetching protocol. This
modification limits the number of bits an ongoing connection may have in its client buffer. This
important refinement is useful when the client has finite buffer capacity, B. This refinement
works as follows. Suppose that the server is considering transmitting frame k. It transmits
this frame in the current slot only if the send window allows the transmission of the frame and
the client buffer constraint

b+z, < B (3)

is satisfied. Condition (3) ensures that the server does not overflow the client buffer.

4.2 Dynamic Send Window

We now introduce a refinement of the send window policy. The idea behind this refinement
is to increase the send window by a large increment when the client buffer holds only a small
reserve of prefetched frames and throttle the server when the client buffer contains a large
reserve of prefetched frames. To this end, we compute the window increment as a function of
the amount of prefetched data in the client buffer:

b

Aw; = Awpax(1 — B)e, Awmax >0, e > 0. (4)

Figure 4 illustrates this refined send window policy. When the client buffer is empty at the
beginning of slot [, that is, when b = 0, the send window is incremented by Awyax. When
the client buffer is full, that is, when b; = B, the send window is not increased at all. We refer
to this send window policy as the dynamic window policy. The dynamic window policy can be
summarized as follows. At the beginning of slot [, the server computes Aw; according to (4),
calculates the new send window, w; = w;_1 + Awy, and sends |w;]| frames. As with the basic
window policy, a new connection starts with a send window of wy = 1 and resets the window
to w; = 1 if the acknowledgments do not arrive by the end of slot .

The parameters Awy,ax and e are used to tune the policy. We provide a detailed numerical
study of the impact of these parameters on the performance of our decentralized prefetching
protocol in Section 5. In Section 5 we also identify the ranges of the parameters that give
good performance. We give here only a brief qualitative discussion of these parameters. A
large Awmax gives large increments Aw and thus allows the server to send more frames. The
parameter Aw has to be large enough to allow for prefetching of future frames. If Awpmayx is
too large, however, a few connections can “swamp” the multiplexer and degrade the protocols’

performance.



Figure 4: Illustration of the dynamic window policy.

The parameter e can be set to give a connection with a nearly empty client buffer an
increased chance of filling its client buffer. To see this, note that for ¢ = 1, the window
increment decreases linearly as the client buffer contents increase. For e > 1, connections with
fairly large buffer contents are allowed substantially smaller increments (compared to when
e = 1), while a connection with small client buffer contents has still a large window increment.
This gives a connection with a small reserve of prefetched frames a better chance of filling its

client buffer.

4.3 Randomized Transmission

In this subsection we introduce a refinement that helps to ensure fair bandwidth distribution
among the ongoing connections. In the protocol described so far, the server transmits the first
|wy | frames of the video immediately after the request of the client has been processed. Subse-
quent transmissions are scheduled I/F seconds, [ = 1,..., N — 1, after the initial transmission.
The relative slot phases remain fixed for the entire duration of a video. To see how this can
lead to unfair bandwidth distribution consider the phase alignment with ¢; > t; depicted in
Figure 5. Suppose connections j and k are the only connections in progress. Now consider
a scenario where connection j fills the multiplexer buffer completely at the beginning of its
slot [. Connection k is then able to fit R?j bits into the multiplexer buffer at the beginning of
its slot I. When connection j is up for transmission again, at the beginning of its slot { + 1,
it can fit Rt; bits into the multiplexer buffer. With the depicted phase alignment (¢; > ),

10
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Figure 5: Phase alignment favoring connection j. If both connections fill the multiplexer buffer
to capacity whenever they transmit, connection j can transmit Rt; bits in a frame period, while
counection k£ can transmit only Rt bits.

connection k has clearly a disadvantage since it can transmit only Rty bits in a frame period
as long as connection j keeps on filling the multiplexer buffer to capacity.

To avoid this unfair bandwidth distribution we introduce randomized transmission: The
server transmits the first |wi | frames of the video immediately after the request of the client
has been processed. The server draws a random phase 0;, [ = 1,..., N—1 from a uniform distri-
bution over [—1/2F,1/2F] in each frame period. The subsequent transmissions are scheduled
l/F + §; seconds, | = 1,..., N — 1 after the initial transmission. With this transmission rule,
the slot phases are constantly reshuffled. Unfair phase alignments can therefore not persist for
extented periods of time.

Note that with randomized transmission, two consecutive transmissions can be spaced less
than 1/F seconds apart. (In fact, two transmissions can be scheduled for the same time. This
happens when the server draws the random phases §; = 1/2F and 0,47 = —1/2F. Note,
however, that we are ignoring processing delays.) Thus, even with a maximal delay in the mul-
tiplexer of 1/F seconds and ignoring propagation and processing delays, the acknowledgements
may not arrive before the next transmission.

We propose two solutions for this problem. The first solution relies on the multiplexer
sending back an error message to the server when a frame does not fit into the multiplexer
buffer. We note that the Source Quench Error Message defined in the Internet Control Message
Protocol (ICMP) [21, p.160] may be used for this purpose. The server assumes that a frame
is successfully received by the client if the multiplexer does not send an error message. The
client is not required to send acknowledgments when this approach is used. We refer to this
approach as multiplezer feedback.

An alternative solution is to randomly spread the transmissions not over the entire frame

period but instead over half the frame period by drawing the random phases ¢; from a uniform
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Trace Mean (bit) | Peak/Mean
lambs 7,312 18.4
bond 24,308 10.1
terminator 10,904 7.3
mr.bean 17,647 13.0

Table 1: Statistics of MPEG-1 traces.

distribution over [—1/2F,0]. Setting the multiplexer buffer to R/2F ensures that the acknowl-
edgements from the client are received before the next transmission is scheduled. We refer to
this approach as the client feedback approach. We note that by spreading out the transmissions
over a smaller interval and reducing the multiplexer buffer client feedback may degrade the
performance of the decentralized prefetching protocol. We provide a detailed numerical study

of the impact of client feedback on the protocols performance in Section 5.

5 Experimental Results

In this section we present the results of a simulation study of the decentralized prefetching
protocol. The study is based on MPEG 1 encodings of the four movies in Table 1. The frame
size traces, which give the number of bits in each video frame, were obtained from the public
domain [18]. (We are aware that these are low resolution traces and some critical frames are
dropped; however, the traces are extremely bursty.) The movies were compressed with the
Group of Pictures (GOP) pattern IBBPBBPBBPBB at a frame rate of F' = 24 frames/sec.
Each of the traces has 40,000 frames, corresponding to about 28 minutes. The mean number
of bits per frame and the peak—to-mean ratio are given in Table 1.

It can be argued that the average rate in bits/sec of the traces is lower than what we would
expect for digital compressed video (e.g., MPEG-2 video); for this reason we have chosen a
relatively small server transmission rate of 45 Mbps. We expect VoD systems in the future
to provide MPEG-2 encoded video with an order of magnitude larger average rates. We also
expect the server transmission rate to grow proportionally. In this scaling, the number of
videos that can be multiplexed will be approximately constant.

We assume in our numerical work that the video frames are transported in packets consist-
ing of 512 bytes of payload and 40 bytes of overhead. We fix the link rate at R = 45 Mbps; the
corresponding multiplexer buffer holds 234,375 bytes (= R/F'). We define the link utilization
as the sum of the mean bit rates of all ongoing connections divided by R. In our experiments
we use a mix of the the four movies that achieves 95% link utilization. Specifically, we use 55

lambs connections, 17 bond connections, 37 terminator connections, and 23 mr.bean connec-
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tions. With these numbers, each of the four movies accounts for roughly one fourth of the link
load.

In each realization of our simulation, we generate a random starting frame 6(j) for each
of the J ongoing connections. The value 6(j) is the frame that is removed from the jth
client buffer at the end of slot 1. The 6(j)’s are independent and uniformly distributed over
[1, N]. All connections start with empty client buffers at the beginning of slot 1. When the
Nth frame of a video is removed from a client buffer, we assume that the corresponding user
immediately requests to see the entire movie again. Thus, there are always J connections in
progress. For each replication of the simulation we also draw random (non-synchronized) slot
phases t(j) for each of the J connections. The t(j)’s are independent and are drawn from
a uniform distribution over [0,1/F]. The t(j)’s determine the relative starting times of the
slots for the J connections. Note that the frames of connection j scheduled for transmission
in slot [ are placed in the multiplexer buffer at the beginning of the slot (see Figure 3),
that is, server j puts its traffic into the queue at instants ¢(j) + ({ — 1)/F, | = 1,...,N
(t(G)+ @ —=1)/F + 6,1, L =1,...,N with randomized transmission). In all our simulations
we assume that all clients have the same buffering capacity, B. We allow a warm—up time of
40,000 frame periods for each replication before counting frame periods with starvation. We
run each simulation until the 90% confidence interval is less than 10% of the estimated loss
probability. We define the loss probability as the long run fraction of frame periods for which
at least one client experiences starvation.

In Figures 6, 7 and 8 we show typical plots of the client buffer contents, b;, the window
increment, Aw;, and the send window, w;, versus slot time, [, for four arbitrarily chosen con-
nections. Figure 9 gives the number of frames that are successfully placed in the multiplexer
buffer by each of the four connections.  For this simulation run we have set the client buffer
capacity to B = 1 MBit. We employ the dynamic window policy without randomized trans-
mission with Awmax = 5 and e = 2. The plots illustrate how the client buffer contents control
the window increment. The left part of Figure 6 shows that the client buffer of connection 2
is drained. This is due to a high action scene in the video. We see from Figure 7 that the
window increment of connection 2 increases as the client buffer is depleted. By the end of
time slot 41,274 the client buffer is empty and the window increment has risen to Awmax = 5.
This allows connection 2 to transmit very aggressively. We observe from Figure 8 that the
send window becomes as large as 17.9 in time slot 41,363. Figure 9 shows that the first 14
frames of the 17 frames sent in time slot 41,363 can be accommodated by the multiplexer
buffer. The remaining 3 frames are lost. The send window is therefore reset to w4 363 = 1 at
the end of slot 41,363. At the beginning of slot 41,364 the new send window is computed as
w41 364 = W41,363 + Awgr 364 = 1 + 2.9 = 3.9, allowing connection 2 to send 3 frames. We see

from Figure 9 that all 3 frames fit into the multiplexer buffer and the send window increases
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Figure 6: Client buffer contents versus slot time of four arbitrarily chosen connections with 1
MBit of client buffer.
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Figure 10: Loss probability as a function of Awy,y for the dynamic window policy without
and with randomized transmission; e = 2 fixed.

to w41 365 = 3.9+ 3.1 = 7.0 in slot 41,365. The right part of Figure 6 shows that the large send
windows enable connection 2 to fill its client buffer again. By time slot 41380 the client buffer
is filled to 90% of its capacity.

We now espouse the problem of finding the values of the dynamic window parameters
Awpax and e that optimize the performance of the decentralized prefetching protocol. Toward
this end we first focus on the impact of the parameter Awy,ax. In Figure 10 we arbitrarily
set e = 2 and plot the loss probability as a function of Awpax for the dynamic window
policy without and with randomized transmission. For this plot we have set the client buffer
capacity to B = 128 KByte. (We are currently working on similar plots for other client buffer
capacities.) The figure seems to indicate that the dynamic window policy works well for a wide
range of Awyax values. Any Awpax between 2 and 11 seems to work well for the dynamic
window policy without randomized transmission while any value between 2 and 8 gives good
performance when randomized transmission is employed. Throughout the rest of this paper
we use the Awyay values that attain the minima in Figure 10; Awyax = 5 for the dynamic
window policy without and with randomized transmission.

We also observe from Figure 10 that the loss probability grows larger for small and very
large Awmax values. The server can not prefetch a sufficient number of frames when Awpax is

too small (<2) and starvation at the client is therefore more likely. When Awpay is too large
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(>11 without randomized transmission, > 8 with randomized transmission) a few connections
can “swamp” the multiplexer buffer preventing the other ongoing connections from maintaining
a full client buffer.

We next study the impact of the parameter ¢ on the performance of the dynamic window
policy. In Figure 11 we plot the loss probability as a function of the parameter e for the dynamic
window policy without randomized transmission. (The plot for randomized transmission is
omitted as it is very similar and leads to exactly the same conclusions.) For this experiment
we use Awpax = 5 and 128 KByte of client buffer. The parameter e appears to have significant
impact on the performance of the dynamic window policy. The minimum of the loss probability,
which is attained for e = 6, is about half the loss probability for e =3 or e = 4. We use e = 6
throughout the remainder of this paper.

Connections with empty client buffers are allotted significantly larger window increments
than connections with full buffers as e gets larger (see Figure 4). This gives connections
with empty buffers an increased chance of fitting their frames into the multiplexer buffer as
connections with full buffers are throttled. This effect is reflected in Figure 11. When e is small
connections with empty client buffers are allotted large window increments, but the window
increments of connections with full buffers are also relatively large. The frames of connections

with empty buffers therefore have to compete with frames of connections with full buffers for
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Figure 12: Loss probability as a function of client buffer size for the basic decentralized prefetch-
ing protocol and its refinements.

bandwidth. It is hence quite likely that frames of connections with empty buffers are lost at
the multiplexer, leading to starvation at the client. For large e, the window increments of
connections with full buffers are minute compared to the window increments of connections
with empty buffers. The connections with full buffers are thus throttled and the connections
with empty buffers have an increased chance of getting their frames through to the client.
When e is too large (> 7) the dynamic window policy gives connections with a few prefetched
frames an extremely small window increment and the send window hardly grows to 2 or beyond.
This prevents the clients from prefetching more frames. The clients are thus able to build up
only a small reserve of prefetched frames and starvation is therefore more likely.

Figure 12 shows the performance of our basic decentralized prefetching protocol, and its
various refinements. We plot the loss probability as a function of the client buffer size for 95%
link utilization. For the basic window policy we use a fixed window increment of Aw = 0.1.
The parameters of the dynamic window policy are set to Awmax = 5 and e = 6. The figure

shows that the basic window policy has unacceptably high losses. The loss probability is about
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8 x 1073 for 1 MByte of client buffer. We also see that the dynamic window policy brings
significant improvement over the basic window policy. The loss probability for the dynamic
window policy is almost one order of magnitude smaller. Adding randomized transmission
further reduces the loss probability significantly. The loss probability for the dynamic window
policy with randomized transmission for 1 MByte of client buffer is about 1.5 x 107°. We
employ multiplexer feedback here.

Our experiments showed that the loss probability for decentralized prefetching with the
dynamic window policy and randomized transmission does not drop below 10~° even for very
large buffers (> 1Mbyte). We observed that with very large client buffers, losses occur almost
exclusively right at the beginning of the movie when the client has no prefetched frames. We
are therefore motivated to introduce a short start—up latency allowing the client to prefetch
for a couple of frame periods without removing and displaying frames. We found that a very
short start—up latency of just 2 frame periods brings dramatic improvements in performance.
With a start—up latency of 2 frame periods the client prefetches during the first and second
time slot without removing frames; the first frame is removed and displayed at the end of the
third slot. The loss probability with 2 frames start—up latency is 2 x 10~7 for 1 MByte of client
buffer; almost two orders of magnitude lower that without start—up latency. For client buffers
smaller that half a MByte, however, the start—up latency does not reduce the loss probability.

This can be explained by the two typical loss scenarios that we observed in our experiments.
One loss scenario is due to high action scenes in the movies. With moderately sized client
buffers (< 500 KByte), a high action scene which requires large frames is likely to drain the
client buffer completely and lead to subsequent losses. For large client buffers (> 500 KByte),
it is highly unlikely that a high action scene drains the buffer completely. Losses due to a high
action scene are therefore extremely rare.

The other loss scenario occurs at the start of a movie. When a movie starts, loss occurs
when due to an unfair phase alignment none of the first |w; | frames of the movie get through
to the client. Since we are drawing a new random phase in each slot, it is unlikely that this
unfair phase alignment persists for the next slot. By allowing a new connection a short start—up
latency of only 2 frames we can therefore avoid most of the initial losses.

In Figure 13 we study the two feedback schemes described in Section 4.3. Recall from
Section 4.3 that in order to provide the server with timely feedback when randomized trans-
mission is employed we may either use multiplexer feedback or client feedback. With multi-
plexer feedback the multiplexer alerts the server whenever one of its packets does not fit into
the multiplexer buffer. Multiplexer feedback allows the server to spread out the transmissions
randomly over the entire frame period. Client feedback relies on the client sending an acknowl-
edgement for each received packet to the server. In order to ensure that the acknowledgements

arrive before the next transmission is scheduled the transmissions can be spread out over only
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Figure 13: Loss probability as a function of client buffer size for randomized transmission with
multiplexer feedback and client feedback.

half of the frame period and the multiplexer buffer size is restricted to R/2F (the delay in
the multiplexer is then at most half a frame period). The figure gives the loss probability as
a function of the client buffer size for 95% link utilization. We employ the dynamic window
policy with randomized transmission and allow for a 2 frame start—up latency. The curve for
multiplexer feedback already appeared in Figure 12. The figure shows that client feedback
performs slightly worse that multiplexer feedback. The loss probability for client feedback is
about half an order of magnitude larger. This can be explained by noting that the trans-
missions are spread out over a smaller interval and the multiplexer buffer is smaller for client
feedback. It is therefore more likely that a frame does not fit into the multiplexer buffer. This
in turn leads to an increased probability of starvation at the client.

In Figure 14 we compare our decentralized prefetching protocols with Join-the-Shortest—
Queue (JSQ) Prefetching [16] and Optimal Smoothing [19, 23, 17]. The plot gives the loss
probability as a function of the client buffer size for 95% link utilization. The optimal smoothing
curves are obtained by applying the optimal smoothing algorithm [19, 23, 17] to the traces
used for the simulation of the prefetch policy. We then compute the loss probability for
statistically multiplexing the smoothed traces on a bufferless 45 Mbps link with the Large
Deviation approximation [15, 23]. We do this for two versions of optimal smoothing: no

initiation delay and a 10 frame initiation delay [20, 23, 3]. The decentralized prefetching
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results are for the dynamic window policy with randomized transmission, multiplexer feedback
and 2 frames start—up latency. The JSQ prefetching results are from [16]. Decentralized
prefetching clearly outperforms optimal smoothing, both without and with start—up latency.
The loss probability for decentralized prefetching is over one order of magnitude smaller than
the loss probability for optimal smoothing with start—up latency. The gap widens to over
two orders of magnitude for 1 MByte of client buffer. The performance of the decentralized
prefetching protocol, however, does not come close to the remarkable JSQ performance. In the
next section we study the gain in performance that can be achieved by adding priorities to the

decentralized prefetching protocol.

6 Prefetching with Priorities

We now attempt to improve the performance of decentralized prefetching by having the sever
mark certain frames as priority frames. Frames are sent as low priority when the client has one
or more prefetched frames in its buffer, that is, when p; > 0. Frames are sent as high priority
when there are no prefetched frames in the client buffer, that is, when p; = 0.

We assume in this study that the multiplexer implements a non-preemptive priority policy
which works as follows. A high priority frame entering the queue never interrupts the trans-
mission of the frame currently in service, irrespective of its priority. The new high priority
frame is placed behind any high priority frames already in the queue and ahead of all low
priority frames. If the multiplexer is implemented with the finite buffer of size R/F, low pri-
ority frames are removed if necessary from the queue in order to accommodate high priority
frames. A high priority frame, however, never pushes another high priority frame out of the
queue. Low priority frames are always added at the end of the queue, provided there is space.
The multiplexer with finite buffer size R/F furthermore timestamps every low priority frame
entering the queue. It periodically checks the low priority frames in the queue and removes
frames that have been in the queue for more than 1/F seconds. This prevents low priority
frames from getting stuck in the back of the queue while high priority frames are served for
extended periods of time.

With this priority policy, a high priority frame is lost if and only if the queue is filled up to
capacity with other high priority frames. Note that the client suffers starvation when a high
priority frame is lost. This is because a frame is sent as high priority if and only if the client
has no prefetched frames in its buffer (p; = 0) and needs the high priority frame by the end of
the slot in order to ensure continuous playback. When a low priority frame is dropped in order
to accommodate a high priority frame the server does not receive an acknowledgement, times
out and retransmits the frame. Starvation at the client occurs only if the dropped frame has

to be retransmitted as high priority (because the client has exhausted its reserve of prefetched
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Figure 15: Loss probability as a function of client buffer size for 95% link utilization.

frames) and the high priority frame does not fit into the queue.

The preceding discussion applies if the multiplexer is implemented with a finite buffer of
capacity R/F. If the multiplexer is implemented with a larger buffer, all frames entering the
queue are timestamped, irrespective of their priority. The multiplexer periodically checks the

frames in the queue and drops those with a delay exceeding 1/F seconds.

6.1 Experimental Results

In Figure 15 we plot the loss probability as a function of the client buffer size for 95% link
utilization. The solid line gives the performance of the decentralized prefetching protocol
with priorities; we apply the basic send window policy here. (We are currently working on
combining priorities with the dynamic window policy and randomized transmission.) We
observe that the decentralized prefetching protocol with priorities clearly outperforms optimal
smoothing. For 512 KByte client buffer the loss probability for the decentralized prefetching

protocol with priorities is about 3 orders of magnitude smaller than the loss probability for
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statistically multiplexing the optimally smoothed traces. JSQ prefetching still performs better
than decentralized prefetching, but the addition of priorities has narrowed the gap to about
one order of magnitude.

It can be argued that the average rate in bits/sec of the traces driving the simulation
(see Table 1) is lower than what we would expect for digital compressed video (e.g., MPEG-2
video). We expect VoD systems in the future to provide MPEG-2 encoded video with an order
of magnitude larger average rates. We also expect that the server transmission rate and client
buffer grow proportionally. In this scaling, the number of videos that can be multiplexed will
be approximately constant, and only 5-10 MByte of client buffer is required to give negligible

loss.

7 Decentralized Prefetching and Residential Broadband Ac-
cess

In this section we discuss how the decentralized prefetching protocol for VoD proposed in this
paper ties into the cable modem technology. First, we give a brief overview of the cable modem
technology; for more details see [9, 10, 14]. The coaxial cable was installed for broadcast of
one-way analog TV. Cable is a shared medium; many homes are attached to the same coaxial
cable. Medium access control for the downstream video traffic is particularly simple as there
is only one sender, the headend. The upstream control traffic, however, poses a problem.
Carrier sensing fails for cable plants with tree—and—branch structure, where only the headend
hears every source. Remedies for this problem are currently being developed [9]. As of the
writing of this paper, there are no fixed standards that specify how upstream and downstream
bandwidth are allocated to homes. Typically, the upstream traffic is transmitted in the 540
MHz range. The downstream bandwidth from 40 — 750 MHz is split into 6 MHz channels
for analog TV. Each of these channels yields approximately 25 Mbps when 64 Quadrature
Amplitude Modulation (QAM) is employed and could thus carry a couple of video streams.
Figure 16 shows a possible VoD architecture with cable. Multiple video servers attach
directly to the cable headend as do multiple cable trunks. Homes are attached to cable trunks
via cable modems. The video servers could be owned by one video service provider or by
multiple competing service providers (all of whom run their applications over our decentralized
prefetching protocol). The request for a video is relayed from the viewers home to the headend
via the upstream channels. The headend, acting as an Ethernet switch, ATM switch, or
router, forwards the request to the appropriate video server. The video server immediately
starts transmitting the video frames. The switch in the headend forwards the frames to the
appropriate output queue. All the videos requested by viewers connected to the same cable

trunk are multiplexed onto the shared channel of capacity, say R bps. Our decentralized
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Figure 16: VoD architecture for cable residential access

prefetching protocol allows for the efficient use of the valuable trunk bandwidth, R. We
achieve transmission with negligible losses and thus constant high video quality for average
trunk bandwidth utilizations of 95%.

8 Conclusion

Prerecorded video has two special properties: (1) for each video, the traffic in each video frame
is known before the video session begins; (2) while the video is being played, some of the video
can be prefetched into the client memory. In this paper we have shown how these two properties
can be exploited to achieve high performance when servers transmit VBR video across a packet—
switched network to clients. Our simulation results indicate that our decentralized prefetching
protocols give good performance, better than that of other decentralized prefetching protocols
in the existing literature. Even though the server has to decide on a transmission schedule
without any direct knowledge of the state of the other ongoing connections, our decentralized
prefetching protocol with priorities does almost as well as JSQ prefetching.

We are currently working on a hybrid scheme that combines centralized and decentralized
prefetching. Such a hybrid scheme is useful when each video server feeds not one but many

clients and a number of video servers share a common link.
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