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Abstract— The efficient distribution of stored information has become a sert intermediate caches between the servers and clients. This
major concern in the Internet which has increasingly become a vehicle for \ill allow users to access much of the stored video content from

the transport of stored video. Because of the highly heterogeneous acces . .
to the Internet, researchers and engineers have argued for layered encoded?]earby servers, rather than accessing the video from a poten-

video. In this paper we investigate delivering layered encoded video usingtially distant server. Given the presence of a caching and/or

caches. Based on a stochastic knapsack model we develop a model for theontent distribution network infrastructure, and of layered video

layered video caching problem. We propose heuristics to determine which ; i ; mihi
videos and which layers in the videos should be cached. We evaluate theIn origin Servers, a fundamental prOblem is to deter EEh

performance of our heuristics through extensive numerical experiments. Yideos andV\{hiCh layers in the videos should be C.aChed- Intu'.
We also consider two intuitive extensions to the initial problem. itively, we will want to cache the more popular videos, and will

Keywords—Proxy Caching, Streaming Layered Video, Utility Heuristics, want to give preference to the lower base layers rather than to
Stochastic Knapsack the higher enhancement layers.

In this paper we present a methodology for selecting which
I. INTRODUCTION videos and which layers should be stored at a finite-capacity
ache. The methodology could be used, for example, by a cable

In recent years, the efficient distribution of stored informatiofs ) h
has become a major concern in the Internet. In the late 199(650‘DSL access company with a cache at the root of the distribu-

numerous companies — including Cisco, Microsoft, Netscaptéontree' Specifically, we suppose that the users have high-speed

: : . "access to the cache, but the cache has limited storage capacity
Inktomi, and N rk Appliance — n I Wi hin L N ;
tomi, and Netwo ppliance — began to sell Web cac OQ@d a limited bandwidth connection to the Internet at large. For

products, enabling ISPs to deliver Web documents faster an . .
reduce the amount of traffic sent to and from other ISPs. Mo?é(ample.’ the I.SP might have a terabyte g:ache W'th a 45 Mbps
I%r_mectlon to its parent ISP. Thus, the video caching problem

recently the Internet has witnessed the emergence of content X . .
as two constrained resources, the cache size and the transmis-

tribution network companies, such as Akamai and Sandpip bn rate of th link betw the ISP and it t ISP
which work directly with content providers to cache and repli§I n raté of the access ink between the [SE and 1S paren '
r methodology is based on a stochastic knapsack model of

cate the providers’ content close to the end users. In paral
P P the 2-resource problem. We suppose that the cache operator has

to all of this caching and content distribution activity, the Inter- d estimate of th lariti  the the video | Th
net has increasingly become a vehicle for the transport of stora@00d estimate ot the populariies ot the the video fayers. 1he

video. Many of the Web caching and content distribution co _roblem,_tlhn etshsenpde, IS ;[10 dlgtirmlnehwglch \t/%d(:os atnd Wh:jCh
panies have recently announced new products for the effici gyers within the video should be cached so that customer de-

distribution of stored video. mand can best be met.

Access to the Internet is, of course, highly heterogeneous,Th'S paper is organized as follows. In Section Il we present

and includes 28K modem connections, 64K ISDN connection%l,Jr layered video streaming model. In Section Il we present

shared-bandwidth cable modem connections. xDSL connér utility heuristics and evaluate their performance. Section IV

tions with downstream rates in 100K-6M range, and high-spe étends our caching model by adding the possibility to negotiate

switched Ethernet connections at 10 Mbps. Researchers and' ﬁ_dehvered stream quality. Section V' considers a queueing

gineers have therefore argued that layered encoded video is apieme for managing clle_nt reque_sts. Section VI con5|ders_ the
efulness of partial caching. Section VII presents an overview

propriate for the Internet. When a video is layered encoded, tH .

number of layers that are sent to the end user is a function of t?]erelated work and Section VIIl concludes the paper.

user’s downstream bandwidth. I
An important research issue is how to efficiently distribute

stored layered video from servers (including Web servers) toFig. 1 illustrates our architecture for continuous media

end users. As with Web content, it clearly makes sense to Btreaming with proxy servers. We first give a rough overview of

M ODEL OF LAYERED VIDEO STREAMING WITH PROXY



F TE= suppose that there afd video objects. We assume that the

I rigia & Crigie video objects are encoded into Constant Bit Rate (CBR) layers,
“'x a which is a reasonable first approximation of the output of hi-
erarchical codecs. For notational simplicity we assume that all
s video objects are encoded infolayers. (Our model extends to
video objects that differ in the number of layers in a straight-
];- forward manner.) Let;(m) denote the rate (in bit/sec) of layer
| o | i"_" l,1l=1,...,L,ofvideoobjectn, m =1,..., M. We define
-..:T- ... a j—quality stream as a stream consisting of laylers . .. , j.
abanchei bam S ] Let T(m), m = 1,...,M, denote the length (in seconds) of
}_.) ||- \ videp pbjectm. LgtR(j,m) deno';e the revenue accrued from
! ! - ! providing aj—quality stream of objeat.

Zhexl Clie Clisid B. PI’OXy Server

Fig. 1. Architecture for caching and streaming of layered encoded video. The proxy server is located close to the clients. It is con-
nected to the origin servers via a wide area network (e.g., the
Internet). We model the bandwidth available for streaming con-
our streaming architecture and then discuss each componeninmous media from the origin servers to the proxy server as a
detail. All available continuous media objects are stored on thettleneck link of fixed capacit¢’ (bit/sec). The proxy is con-
origin servers. Popular streams are cached in proxy servers. Tigeted to the clients via a local access network. The local access
clients direct their streaming requests to the appropriate promgtwork could be a LAN running over Ethernet, or a residential
server. If the requested stream is cached in the proxy, it is diecess network using xDSL or HFC technologies. For the pur-
rectly streamed over the local access network to the client. gbse of this study we assume that there is abundant bandwidth
the requested stream is not cached in the proxy, it is streanfed continuous media streaming from the proxy to the clients.
from the origin server over the wide area network to the proxyve model the proxy server as having a storage capacity of

The proxy forwards the stream to the client. (bytes). We assume that the proxy storage has infinite storage
bandwidth (for reading from storage). We note that the proxy
A. Layered Video storage is typically a disk array with limited storage bandwidth

The continuous media objects available on the origin servedtge to the limited disk bandwidths and seek and rotational over-
are prerecorded audio and video objects, such as CD-qualigads. Our focus in this study, however, is on gaining a funda-
music clips, short video clips (e.g., news clips, trailers or mumental understanding of the impact of the two basic streaming
sic videos) or full-length movies or on-line lectures. Our focugsources (bottleneck bandwidthand cache spadg) on the
in this study is on video objects that have been encoded usipi®xy performance. We refer the interested reader to [4-6] for
layered (hierarchical) encoding techniques [1-3]. With hiera@ detailed discussion of the disk array limitations as well as dis-
chical encoding each video object is encoded into a base laggissions on replication and striping techniques to mitigate these
and one or more enhancement layers. The base layer contdiifméations.
the most essential basic quality information. The enhancemeniVe consider a caching scenario where the cache contents are
layers provide quality enhancements. A particular enhancemeipdated periodically, say every few hours, daily, or weekly. The
layer can only be decoded if all lower quality layers are avaiperiodic cache updates are based on estimates of the request pat-
able. Therefore, an enhancement layer is useless for the clieriein of the proxy’s client community. A service provider may es-
the corresponding lower quality layers are not available. timate the request pattern from observations over the last couple

Layered video allows service providers to offer flexible®f days or weeks. Suppose that the requests for video streams
streaming services to clients with vastly different receptio@rrive according to a Poisson process with rateequests/sec).
bandwidths and decoding capabilities. Typically, wirelessetp(j, m) denote the popularity of thg-quality stream of ob-
clients and clients with modem-—speed wireline Internet accegstn, that is,p(j, m) is the probability that a request is for the
will request only the base layer stream. Clients with highj—quality stream of objeci.. These popularities could be esti-
speed ADSL or cable modem access, on the other hand, nfagted from the observed requests using an exponential weighted
wish to receive higher quality streams consisting of base lay@oving average. As a proper probability mass distribution the
as well enhancement layers. Furthermore, layered video allop(g, m)’s satisfyzi‘f:]L Zle p(4,m) = 1. Also, note that the
for flexible pricing structures. A service provider may offer tharrival rate of requests for the-quality stream of object: is
base layer stream at a basic rate and charge a premium for ghen by Ap(j, m).
enhancement layers. In other words, clients are charged mor®ur focus in this study is on caching strategies that cache
when receiving more layers (i.e., higher quality streams). Sucbmplete layers of video objects in the proxy. Our goal is to
a pricing structure might prompt clients to request the cheapsache object layers so as to maximize the revenue accrued from
base layer—only stream of a news clip or talk show, say, whitke streaming service. When updating the cache our heuristics
requesting the more expensive high quality stream of an entgive layers of very popular objects priority over layers of moder-
tainment movie. ately popular objects. Moreover, lower quality layers are given

To make the notion of layered video objects more precispriority over higher quality layers (as these require the lower



quality layers for decoding at the clients). long run rate at which these requests are granted and serviced is
To keep track of the cached object layers we introduce a vexp(j, m)(1 — Bg(j,m)). The long run rate of revenue accrued

tor of cache indicators = (cy, ¢, ... ,cpm), With0 < ¢, < L from the serviceg—quality streams of objeet is the revenue

form = 1,...,M. The indicatorc,, is set toi if layers 1 perserved requesk(j, m), multiplied by the throughput. Thus,

throughi of objectm are cached. Note that,, = 0 indicates the long run total rate of revenue of the streaming service is

that no layer of objectn is cached. With the cache indicator

notation the cache space occupied by the cached object layers is Mo . . .
given by R(c) = A Z > R(i,m)p(j,m)(1 = Be(j,m)). ()
m=1 j=1
M cm
S(c) = Z ri(m)T (m). (1) Our goal is to cache object layers so as to maximize the total
m=1 [=1 revenue rate.

C. SreamDélivery I1l. OPTIMAL CACHING

The client directs its request forjaquality stream of a video  In this section we study optimal caching strategies. Suppose
objectm to its proxy server (for instance by using the Reathat the stream popularitieg((j, m)) and the stream character-
Time Streaming Protocol (RTSP) [7]). If all the requesteibtics (layer rates; (m) and lengthd’(m)) are given. The ques-
layers are cached in the proxy,( > j), the requested lay- tion we address is how to best utilize the streaming resources
ers are streamed from the proxy over the local access netwetkbottleneck bandwidtlC' and cache spacé — in order to
to the client. If layers are missing in the proxy,( < j), maximize the revenue. Our focus in this study is on optimal
the appropriate origin server attempts to establish a connectiathing strategies, that is, we focus on the question: which ob-
for the streaming of the missing layets, + 1,...,7 at rate jects and which layers thereof should be cached in order to max-
> 1—.. 41 r1(m) over the bottleneck link to the client. If there isimize the revenue? Formally, we study the optimization prob-
sufficient bandwidth available, the connection is established alegn maxc R(c) subject toS(c) < G. Throughout this study
the stream occupies the link bandwidfi;_. ., r/(m) over we assume the complete sharing admission policy for the bot-
the lifetime of the stream. (The layets. .. , c,, are streamed tleneck link, that is, a connection is always admitted when there
from the proxy directly to the client.) We assume that the cliem sufficient bandwidth. We note that complete sharing is not
watches the entire stream without interruptions, thus the bantkcessarily the optimal admission policy. In fact, the optimal
width Y>7__ i (m) is occupied forT'(mn) seconds. In the admission policy may block a request (even when there is suffi-
case there is not sufficient bandwidth available on the bottleient bandwidth) to save bandwidth for more profitable requests
neck link, we consider the request as blocked. (In Section ¥riving later. We refer the interested reader to [8, Ch. 4] for a
we study a refined model where clients may settle for a loweetailed discussion on optimal admission policies. Our focus in
guality stream in case their original request is blocked.) this study is on the impact of theaching policy on the revenue;

Formally, letBc(j, m) denote the blocking probability of the we assume complete sharing as a baseline admission policy that
request for g—quality stream of objeat:, given the cache con- is simple to describe and administer.
figurationc. Clearly, there is no blocking when all requested The maximization of the long run revenue rdtéc) over all
layers are cached, that igfc(j,m) = 0 for ¢,, > j. If possible caching strategies (i.e., cache configuratipissa dif-
the request requires the streaming of layers over the bottlendigklt stochastic optimization problem, that — to the best of our
link (¢ < j), blocking occurs with a non—zero probabilityknowledge— is analytically intractable. To illustrate the prob-
Bc(j, m). We calculate the blocking probabiliti€sc(j, m) us-  lem consider a scenario where all video layers have the same
ing results from the analysis of multiservice loss models [8]. Arate r and lengthT’, i.e.,r;(m) = r andT'(m) = T for all
overview of the relevant loss modeling is provided in the Apt = 1,... ,L, and allm = 1,... , M. In this scenario all ob-
pendix. In summary, we model the bottleneck link as a stochgect layers have the sizél’. Thus, we can cache up @/(rT')
tic knapsack of capacity’. Requests forj—quality streams object layers (which we assume to be an integer for simplicity).
( =1,...,L) of objectm, m = 1,...,M are modeled as Suppose that during the observation period used to estimate the
a distinct class of requests, thus there is a total/df distinct stream popularities, the proxy has recorded requests/folis-
classes of requests. The load offered by requestg-fguality tinct objects from its client community. Thus, there are a to-
streams of objeatn is Ap(j, m)T'(m). The blocking probabil- tal of M/ L object layers to choose from when filling the cache
ities Bc(j, m) for the request classes can be calculated usiggith “hot” new releases there might even be more objects to
the recursive Kaufman—Roberts algorithm [8, p. 23] with a timeonsider). Typically, the cache can accommodate only a small
complexity ofO(C'M L). The expected blocking probability of subset of the available object layers, i@/,(rT) < M L. For
a client’s request is given by ML

E(rea/w) )

M . . the cache completely; a prohibitively large search space even for
B(C) - Zp(],m)Bc(],m) Sma”ML

Recall that with layered encoded video a particular enhance-
The service provider should strive to keep the expected blockingent layer can only be decoded if all lower quality layers are
probability acceptably small, say, less than 5%. The throughvailable. Therefore, a reasonable restriction of the search space
put of requests foj—quality streams of objeat:, that is, the is to consider a particular enhancement layer for caching only if

an exhaustive search there possibilities to fill

m=1 j=1



TABLE |

the rate for each layer and its length. The rate for each layer is
UTILITY DEFINITIONS.

drawn randomly from a uniform distribution between 0.1 and 3

Popularity utility U = Zf:z p(j, m) Mbp;, vyhilg the Igngth of the movie is drawn from an exponen-
tial distribution with an average length of 1 hour.
Revenue utility wm = SF R(G, m)p(j,m) In the simulation experiments client requests arrive accord-
o g=l ’ ’ ing to a Poisson process. The average request arrival rate is 142
. . ; ; Erlangs. The client can request either a base layer only or a
— v L RGm)pj,m)
Revenue density utilityl u,m = Ei:l ri(m)T(m complete movie. The request type and the movie requested are

drawn randomly from a Zipf distribution with a parameter of

¢ = 1.0. The revenue for each movie layer is uniformly dis-
all lower quality layers of the corresponding object are cachedibuted between 1 to 10.
Even the “reasonable” search space, however, is prohibitivelyThe results of interest will be the revenue per hour and the
large for moderaté/ L; with M =50, L = 2, G/(rT) = 20, blocking probabilities. To obtain the results with 99% confi-
for instance, there ar2929 - 10'® possibilities to fill the cache dence intervals, we run the experiments with different random
completely. seeds and we require a minimum of 10000 runs before calculat-

Because the maximization problemaxc R(c) subject to ing the confidence intervals. In each run we randomly assign the

S(c) < @ is analytically intractable and exhaustive searchgmpularities of movies from the Zipf distribution, the rates and
overc are prohibitive for realistic problems, we propose heurighe lengths of the movie layers. The results are calculated as the

tics for finding the optimal cache composition average value of the revenue per hour from all the runs until the
- o confidence intervals are reached.
A. Utility Heuristics We first tested the performance of our heuristics in small
The basic idea of our utility heuristics is to assign each ¢oblems in order to be able to compare the heuristic against
the M L object layers a cache utility; ,,,, [ = 1,...,L, m = the “reasonable” exhaustive search. For the small problems we
1,...,M. The object layers are then cached in decreasing orce&t M = 10 with each movie having two layers. We varied the

of utility, that is, first we cache the object layer with the highedink bandwidthC' between 3 and 15 Mbit/s and the cache capac-
utility, then the object layer with the next highest utility, andty between 3 and 7 Gbytes. The cache could therefore store on
so on. If at some point (as the cache fills up) the object laytire average between 3.5 and 7.6 layers out of the total 20 layers,
with the next highest utility does not fit into the remaining cacher between 23.1 and 41.7% of the total movie data.
space, we skip this object layer and try to cache the object layefThe results of the small problems are shown in Table II. In
with the next highest utility. Once a layer of an object has bedmble 1l we show the average error obtained with each heuristic
skipped, all other layers of this object are ignored as we continaempared to the “reasonable” exhaustive search for four differ-
“packing” the cache. We propose a number of definitions of trent cache configurations. Ti&mall Link andLarge Link refer
utility v, ., of an object layer; see Table | for an overview. to link capacities of 3 Mbit/s and 15 Mbit/s, respectively, and
The popularity utility is based exclusively on the stream pof@mall Cache and Large Cache refer to 3 Gbyte and 7 Gbyte
ularities; it is defined by, ., = p(I,m) + p(I + 1,m) + --- + caches, respectively.
p(L,m). This definition is based on the decoding constraint As we can see, our heuristics achieve performance very close
of layered encoded video, that is, an object lay&r required to the optimum in most cases. Only when both the link and the
(i.e., has utility) for providing—quality streams (consisting of cache are small is there any marked difference in performance.
layers 1 through), I + 1—quality streams, .., and L—quality This is largely due to the small link capacity, only 3 Mbit/s,
streams. Note that; ,, is the probability that a request involveswhich allows us to stream only one movie on the average. As
the streaming of laydr of objectm. Also, note that by defini- both the link and cache grow in size, we can achieve the same
tion u; ,,, > w1, forl =1,..., L — 1. This, in conjunction performance as the optimal caching strategy.
with our packing strategy ensures that a particular enhancemerito test the performance of our heuristics in real-world size
layer is cached only if all corresponding lower quality layers angroblems, we ran the heuristics for 1000 movies. We varied

cached. the cache size between 12 and 560 Gbytes. The cache could
) o therefore hold on the average between 13.9 and 625 layers,
B. Evaluation of Heuristics or between 0.9 and 41.7% of the total movie data. Given the

In this section we present some numerical results from boslerage length of a movi€,.,, the average rate of a movie
analytical and simulation experiments to evaluate various ass,. and the client request rate we would need on the aver-
pects of the heuristics algorithms. The analytical experimerigeT,47q.¢A Mbit/s of bandwidth to stream all the requested
based on exhaustive optimal search are carried out to evaluaxevies. We varied the link capacity between 10 and 150 Mbit/s,
the proximity of the solution provided by the heuristics algoer between 1 and 15% of the total bandwidth required.
rithm to the actual optimal solution. The simulation experi- Because running the exhaustive search was not feasible for
ments, on the other hand, are carried out to verify the correctnggseblems this large, we approximated the best possible perfor-
of blocking probability calculation used by the heuristics alganance by calculating the revenue when the blocking probability
rithm. was zero. This means that all client requests are always satisfied

We assume that there are 1000 different movies, each encoded it provides us with an upper limit on the achievable revenue.
into two layers. The characteristics of each movie are defined by reality, this upper limit is not reachable unless the link and



TABLE Il
AVERAGE ERROR OF HEURISTICS IN SMALL PROBLEMS

Small Link Large Link
Utility heuristic | Small Cache | Large Cache | Small Cache | Large Cache
Popularity 1.6% 2.4% 0.006% 0%
Revenue 2.8% 0.4% 0.1% 0%
Revenue density 0.3% 0.3% 0.1% 0%
1 R ”X::gﬁ”?‘/%;i_;:%a:’zaiw | ' |
0.9 :,25::&:67 e —mgs e 0.9f .
P 4::;:;;;;;/@;;
0.8 oo T 1 0.8} .

Revenue relative to no blocking
Revenue relative to no blocking

0.7 —— No blocking H 0.7 7
—o— Popularity — 4% cache
—— Revenue - 4% cache g

0.6F —— Rev. dens. — 4% cache H 0.6F —— No blocking H
-© - Popularity - 16% cache —o— Popularity — 1% link
~ - Revenue - 16% cache —— Revenue - 1% link

05k —+- Rev. dens. - 16% cache || 05 — Rev. dens. - 1% link ||
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0 2 4 6 8 10 12 14 16 0 10 20 30 40 50
Link capacity (% total) Cache size (% total)
Fig. 2. Revenue as function of link capacity for 3 different cache sizes Fig. 3. Revenue as function of cache size for 2 different link capacities

cache capacities are sufficiently large to ensure that no cliestould first increase the cache before increasing the link capac-
requests are ever blocked. In our tests the smallest obseritgdWe see that when the cache size is around 20% of the total
blocking probabilities were around 0.005%. movie data (250 Gbytes in our case), further increase in cache

In Fig. 2 we show the revenue relative to the no blocking casize provides only small gains in revenue. At this point, increas-
obtained with 3 different cache sizes as a function of the linkg the link capacity provides larger gains in revenue. This be-
capacity. We can see that the revenue density heuristic perforinasior can also be observed in Figs. 2 and 3 where we can see
the best overall and that the performance difference is biggéisat the revenue increases roughly linearly with the link capacity
when the link capacity is smaller. As the link capacity increasesnd roughly logarithmically with the cache size.
the performance difference disappears. We also see that the popn Fig. 5 we show the expected blocking probability for the
ularity heuristic has the worst overall performance. revenue density heuristic. Note that the plot shdws B(c)

In Fig. 3 we show the revenue obtained with 2 different linland smallest expected blocking probability is therefore obtained
capacities as a function of the cache size. Here the differenghen the curve is close to 1. This plot reflects the typical block-
between revenue density heuristic and the others is clearer. Fay probabilities we obtained in all of our experiments, includ-
example, with a 1% link and a 20% cache (10 Mbit/s link anthg the experiments in Sections IV, V, and VI.

a cache of 250 Gbytes in our case), revenue density heurisWe also studied the effects of varying the paramétir the

tic achieves 87% of the upper limit while the revenue heuristigipf-distribution and varying the client request rake Previous
achieves only 79%. Again, as in Fig. 2, when we have enougtudies in Web caching and server access dynamics have found
link and cache capacity, the difference between the heuristitgt( can vary from 0.6 in Web proxies [9] up to 1.4 in popular
disappears. To illustrate the tight confidence intervals we oWeb servers [10]. We studied four different valueg phamely
served, we plot the revenue density heuristic in the 1% link cages, 0.8, 1.0, and 1.3. In Fig. 6 we show the revenue obtained
with the 99% confidence intervals. with each of the four parameter values for three different link

Overall, we can conclude that the revenue density utilityapacities as a function of the cache size. We can see that the
heuristic has the best performance of the three heuristics studiegtves corresponding to one value(ofire close together and
This is especially true in situations where we have a shortagetbét there is a significant difference in groups of curves belong-
one of the resources, link capacity or cache size. This impliggy to different values of. This implies that a decrease {n
that the revenue density heuristic predicts the usefulness ofnaovies become more equally popular) requires significant in-
layer more accurately than the other two heuristics. creases in link capacity and cache size to keep the revenue at the

In Fig. 4 we show the revenue obtained with the revenue desame level. On the other hand, shoglthcrease (small num-
sity heuristic as a function of both link capacity and cache sizber of movies become very popular), we can achieve the same
We observe that if we have a shortage of both resources, vayenue with considerably less resources.
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In Fig. 7 we show the effects of varying the client request
rate. We plot curves for three different values\afor two dif-
ferent link capacities. The curves for “Lowat 6% link” and
“Medium X at 10% link” fall on top of each other. We can
clearly see that the client request rate has much less effect on
the revenue than the Zipf-parameter. In some cases, it is possi-
ble to counter the changes in request rate by increasing the link
capacity or cache size. For example, if the request rate goes
from Low to Medium, increasing the link capacity from 6% to
10% (60 Mbit/s to 100 Mbit/s in this case) keeps the revenue the
same.

In conclusion, all three of our heuristics perform well un-
der many different link and cache size combinations. The rev-
enue density heuristic achieves the best performance under con-
strained conditions.



IV. NEGOTIATION ABOUT STREAM QUALITY

In this section we study a negotiation scheme where in case 0.14

the client’s original request is blocked, the service provider tries
to offer a lower quality stream of the requested object. The client
may then settle for this lower quality stream. The question we
address is: how much additional revenue is incurred with this
“negotiation.” As we shall demonstrate, this intuitively quite
appealing approach adds very little to the revenue in most situ-
ations. For simplicity we focus in this section on video objects
that are encoded intb =2 layers: a base layer and one enhance-
ment layer. (Our arguments extend to the case of more encoding
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layers in a straightforward manner.) Suppose that a client re- 5 0

guests a 2—quality stream (consisting of base layer and enhance-vink capacity % total) 00 Cache size (% total)
ment layer) of objectn. Suppose that the cache configuration _ o
is given byc. Clearly, the original request can only be blocked Fig. 8. Increased revenue from renegotiation

if not all requested layers are cached, that ig,,if < 2. If the
client's original request for a 2—quality stream of objectis
blocked the service provider tries to offer a 1—quality (i.e., baseegotiations isR(c) + Rneg(C), WhereR(c), the revenue rate
layer) stream of the object. The service provider is able to makeurred from serving first—choice requests, is given by (2).
this offer if the base layer stream is not blocked.

Note that the negotiations increase the arrival rates of requestsNumerical Results
for base layer streams. This is because the blocked 2—qualit

tream r s “r " as b laver stream r s Wi e experimented with adding the renegotiation revenue to
stream requests ‘reappear- as base layer stream requests. Wiy ogig We first tested the quality of the approximation used in

negotiations the armval rates of base layer stream requests ggl'culating the blocking probability of the system with renegoti-

pend on the blocking probabilities of 2—quality stream requestgt%; against the simulation results. We varied the link capacities

that is, the system becomes a generalized stochastic knaps[?e een 10 to 120 Mbps. Our results show a close approxima-

[ET.’ CQ' :ta]' r(]: alguliting thekblrc: cking prpbab?{ities Of tlf:je g_?_ﬂert'ion of the analysis to the simulation results with an average er-
alized stochastic Knapsack, NOWEVET, IS quite unwieldy. Thelgs. ¢q 4 g 504 for 12 Gbhyte cache and 0.7-1.1% for 560 Gbyte
fore we approximate the blocking probabilities of the stream:,

ing system with negotiations. In typical streaming systems the _. .
. . . “Fig. 8 shows how much extra revenue renegotiation could
blocking probabilities are small, typically less than 5 %. The in- . . . A
- : . ring relative to the baseline reveniiéc). The revenue in Fig. 8
crease in the arrival rates of base layer stream requests is there- . ; .
. X ; . .IS based on the assumption that the client will always accept the
fore relatively small. We approximate the blocking probabili; . o . : .
) . L . lower quality version if one is available, i.€..(m) = 1 for
ties of the system with negotiations by the blocking probabil-
" . L . =1,...,M. We also assumed th&,.;(1,m) = R(1,m)
ities of the system without negotiations. The probability th . X
S ; : orm = 1,...,M, i.e., the revenue from the renegotiated
the client’s original request for a 2—quality stream of object . ; .
) . . . stream is the same as if the client had requested the lower qual-
is blocked is approximateli3c(2,m). The probability that the : . X X .
) . : .~ ity stream in the first place. These two assumptions give us the
corresponding base layer stream is not blocked is approximate

. . Maximum possible gain from renegotiation.
1-Bc(1 . Suppose that the client accepts the quality degra- . . .
¢l m) PP P q y deg As we can see from Fig. 8, the largest gains from renegotia-

ion with pr ilityP, . If the clien n . . 2
dation with probabilityPac.(m). If the client does not accept on are achieved when the cache size is extremely small, only

the offer the negotiation terminates. Thus, given that the ng- . .

gotiation is entered, it ends in a success (i.e., service provi 72% ofthe_tgtal ""”?0“”‘ ofdata. _The renegonguon gains are al-

and client settle for a base layer stream) with probability- most mseps_mve to I|nkcapac_|ty with th.e exception of very smal]

Bc(1,m))Paec(m). The long run rate (successful negotiationgnk capacities ;vhere ;h_e gains da;t(a);llgh(tjl):hsmal_ler(.j The rEaxrl

per hour) at which negotiations settle for a base layer stream'gf'™M 9an WE 0DSErVedis aroun o andine gain drops sharply

objectm is Ap(2,m)Be(2,m)(1 — Be(1,m)) Pace(m). Sup- as the cache size increases. The maximum gain would decrease
9’ ) ) acc .

pose that each successful negotiation resulting in the deliveryao% the client acceptance probabiliy,. decreases. Also, if the

a base layer stream of objeatincurs a revenue o neg (1, m) cache size and link capacity are large, the potential gain from

(which may be different fronf(1,m) as the service provider renegotiation is typically well below 1%. We can therefore con-

may offer the base layer at a discount in the negotiation). ThL%ud(.a that reng:-go_t!atlon,_ although_lntunwely a_ppealmg,_doe_s not
rovide any significant increase in revenue in most situations.

the long run total rate of revenue incurred from successful negp-. " L .
his is because renegotiation is only applicable to blocked re-

tiations is
guests and one of the goals of a cache operator would be to keep
M the expected blocking probability as low as possible.
Rneg(c) =A Z Rneg(]-, m)p(Z, m)BC(27 m)
m=1 V. QUEUEING OFREQUESTS

(]- _BC(]-;m))Pacc(m)' . . . .
In this section we study a request queueing scheme where in

The long run total rate of revenue of the streaming service wittase the client’s request is blocked, the service provider queues



0.04

i.e.,r1(m) =ryandra(m) =r.form=1,... , M, and (2) all

—— A‘rrival - 4% cache ‘ . .

—— Resource - 4% cache videos have the same lendth We study a system where clients
0.0351| —— Revenue - 4% cache ) isti

o Arrival - 16% cache request only complete streams (consisting of both base layer

x - 0/ .

003f1 T Revens - 16% cache and enhancement layer), i.8(1,m) = 0 form = 1,..., M.

“o Arival - 40% cache For ease of notation we writg(m) for p(2, m) and note that
0.025H ~ - 4 1 . .

-+ Revenue - 40% cache Z%zl p(m) = 1. We order the video objects from most popu-

lar to least popular; thug(m) > p(m+1), m=1,... ,M—1.

In the considered system no revenue is incurred for streams con-
sisting of only the base layer, i.€?(1, m) = 0. We assume that

all complete streams incur the same revenue,R€,m) = R

©
o
=
3}

Increased revenue from queueing requests
o
o
N

0.011
form=1,... ,M.
0.0051 We investigate a caching strategy that caches both base and
0 enhancement layer of very popular video objects. For mod-
0 2 4

Liﬁnkcapac?ty % totlgl) 12 14 16 erately popular objects only the base layer is cached (and the
enhancement layer is streamed upon request over the bottle-
Fig. 9. Increased revenue from queueing requests for buffer size of 100neck link of capacityC'). For relatively unpopular objects
neither base nor enhancement layer is cached. N.getde-
note the number of completely cached objects. Clearly
the request. With the queueing strategies, we expect that tNe < |G/(ry +7)T)| := N{***. Let N, denote the num-
queued requests make use of the resources released by currdr@ifyof cached base layers. THé completely cached ob-
served requests. This has the potential of increasing the resoyeégés take up the cache spaég (r, + 7.)T. Hence,0 <
utilization and thus, bringing additional revenue. The questioN> < [(G — Ni(ry +1¢)T)/(rT)| := Ny**. The investi-
is how much additional revenue does it bring. gated caching strategy caches base and enhancement layer of the
We use simulation experiments to answer this question. Té most popular objects, that is, objedts .. ,N;. It caches
align the experiments with the real-world practice, we assurtfee base layers of th&'> next most popular objects, that is of
that a client will cancel its request after waiting for some timegbjectsN; +1,... ,N; + Ns.
referred to as theequest timeout period. We model the timeout ~ The probability that a request is for a completely cached ob-
period using an exponential distribution with an average of ject is P, = Eﬁ;lp(m). The probability that a request is

minutes. for an object for which only the base layer has been cached
We assume that the queue is of a finite size. Anincoming P, = S"M*™  p(m). Note that the probability that a

request finding a full buffer will be blocked. We consider thregequest is for an object which has not been cached at all is
different strategies for ordering the requests in the queue, i.€, =1 — P, — P,.
based on the order of requestivals, their requiredresources We model the bottleneck link connecting the cache to the
and the potentialevenues. wide area network again as a stochastic knapsack [8]. The bot-
Fig. 9 shows how much extra revenue queueing of requeslisneck link is modeled as a knapsack of capaCityVe refer to
could bring relative to the baseline revenli¢c). As we can streams of completely cached video objects as class 1 streams.
see from the figure, the gain from introducing the queue is veGlass 1 streams consume no bandwidth on the bottleneck link,
small. The gain is not affected by the cache size. The gaifat is,b; = 0. The arrival rate of class 1 streamsis = AP, .
generally increases with the link capacity. Streams of video objects for which only the base layer is cached
With the limited bandwidth of the bottleneck link, whichare referred to as class 2 streams. Class 2 streams consume
causes request blocking in the first place, the serving of ottee bandwidthb, = r.. The arrival rate for class 2 streams
request from the queue will mean the blocking of another iis \, = \P,. Streams of video objects which have not been
coming request. This results in a near zero gain in the numhgiched at all are referred to as class 3 streams. Class 3 streams
of requests served. A possible gain can be achieved by changiagsume the bandwidth, = r, + r. and have an arrival rate of
the request service strategies, for example by serving the requgst= AP;. All streams have a fixed holding tinfe
according to the potential revenue that it brings. Our objective is to maximize the total long run revenue rate,
or equivalently, the long run throughput of requests (i.e., the
long run rate at which requests are granted and serviced). To-
Consider a streaming system whelientsareonlyinterested wards this end lef'H;, denote the long run throughput of class
in complete streams (consisting of allL layers) ancho revenue & requests. Also, lef' H denote the long run total throughput of
isincurred for partial streams (consisting of less thah layers). requests. Cleary['H = TH;, + T H, + T H;. Let By, denote
The question we address is: in such a system is caching of partieg probability that a request for a stream of class blocked.
streams (e.g., base layers) beneficial? Interestingly, the ans@bwiously, B; = 0 since class 1 streams do not consume any
appears to bgo. bandwidth. ThusT H = A\[P; + P»(1 — Bs) + P3(1 — Bs)].
We focus on the homogeneous two-layer case where the i
video objects are encoded info= 2 layers: a base layer of A Numerical Results
rater; (m) and one enhancement layer of rat€m). For sim- We used the same experiment setup as for evaluating the per-
plicity we assume that (1) all videos have the same layer ratésrmance of the utility heuristics in Section I1I-B. In fact, we can

V1. s PARTIAL CACHING USEFUL?
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Fig. 10. Normalized throughput for partial caching and trunk reservation wifg. 11. Normalized throughput for partial caching and trunk reservation with
C = 150 Mbps different Zipf parameters

consider the partial caching case as a special case of the uti{#jen the whole cache is reserved for caching complete movies.

heuristics. Note that for the partial caching case the utilities 81 this case, there are no class 2 streams and thus, the link is

the base and enhancement layer of a given movie are the satfgd exclusively for streaming the class 3 movies.

and thus base layer and enhancement layer are cached togethdrig- 11 shows the effect of varying the popularity of the
In our experiments we question the usefulness of partilovies. We observe that the proportion of the cache space

caching where a portion of the cache is reserved for cachiffifit Needs to be reserved to achieve the optimum throughput
base layers only. Doing so allows us to cache (at least the bif¥ethe partial caching case changes with the Zipf parameter.
layers of) a larger number of movies for the same cache size. ARiS makes it harder to dimension the cache properly to achieve
intuitive question to follow is whetherunk reservation is ben-  the Optimum throughputaat all times. Considering this difficulty

eficial. With trunk reservation a portion of the link bandwidth,and the fact that reserving the entire cache for caching complete

sayCy = 2% of C, = = 0 — 100, is reserved for streaming movies give the maximum throughput, our experiments indicate

the enhancement layers of the class 2 movies which have b¥¥ the partial caching is not beneficial.
layers in the cache. We naturally expect that a combination of
these two strategies may give us the best throughput.

Fig. 10 shows the normalized throughput as a function of the There are only few studies on distributing video objects with
percentage of cache space used for caching complete moviEghes, all of which are complementary to the issues studied in
The figure also shows the throughput for different link reservdhis paper. Rejaiet al. propose a proxy caching mechanism [11]
tion and cache sizes. The link reservation of 0% implies a conmconjunction with a congestion control mechanism [12, 13] for
plete sharing of the link bandwidth between class 2 and clas$ayered—encoded video. The basic idea of their caching mech-
streams. This case can be analyzed usingstibehastic knap- anism is to cache segments of layers according to the objects’
sack formulation, see Section II-C, which gives us the blockingopularities: the more popular an object, the more complete are
probabilitiesB, and B; and hence the throughput. On the othethe individual layers cached and the more layers are cached (par-
hand, the link reservation of 100% implies a total blocking dfially). When streaming an object to a client, the layer segments
class 3 streams. The link is solely used for streaming enhantiegat are not cached at the proxy are obtained from the origin
ment layers for class 2 streams which have base layers caclssdver.

As we have only one traffic class, this case can be analyzed usA related idea is explored by Wareg al. in their study on

ing the Erlang—B formula with the number of trunks bediig-..  video staging [14]. With video staging the part of the VBR
For the other cases with the link reservations between 0 to 1009deo stream, that exceeds a certain cut—off rate (i.e., the bursts
we use simulations to obtain the throughput. of a VBR stream) is cached at the proxy while the lower (now

The results confirm our intuition that once the base layers ag#goother) part of the video stream is stored at the origin server.
cached, it is beneficial to reserve some bandwidth to give usSenet al. [15] propose to cache a prefix (i.e., the initial
an optimum throughput. For example, if we reserve 30% dfames) of video streams at the proxy and to employ work—
the cache space for complete movies, which also means thatatead smoothing while streaming the object from the proxy to
reserve 70% of the cache for base layers, then reserving dhg client. The cached prefix hides the potentially large initial
amount of bandwidth for streaming class 2 movies will givstart-up delay of the work—-ahead transmission schedule from
us better throughput than complete sharing. However, we cthe client.
clearly see from Fig. 10 that, for a given cache size, the max-Tewariet al. [16] propose a Resource Based Caching (RBC)
imum is always obtained at the right edge of the plot, that ischeme for video objects encoded into one CBR layer. They

VII. RELATED WORK



model the cache as a two resource (storage space and bang-_ ., r(m)). We haveSc(j,m) = {n € Sc : bc-n <
width) constrained knapsack and study replacement polici€s— bc(j, m)} The blocking probabilities can be explicitly ex-
that take the objects’ sizes as well as CBR bandwidth into guressed as

count. The replacement policies are evaluated through simula-

tions. Our work differs from RBC in that we develop ana- Be(j,m) =1-

Iytical stochastic knapsack model for the two resource problem. M L ) n(j,m) ; I
Moreover, we analyze a streaming system where videos are en- 2nesetim) Unor 121 (Pl m) [ (nl,m))!

coded into multiple layers. Yonesc o T (G, m))mGm) [ (n(j, m))!
VIIl. CONCLUSION wherep(j,m) = Ap(4, m)T (m). Note thatp(j,m) is the load
In this paper we have formulated an analytical stochas%{'ered by requests foj—quality streams of objectr. The

knapsack model for the layered video caching problem. We ha é)cking probabilities can be efficiently calculated using the re-

proposed three different heuristics for determining which Iaye? rsive Kaufman—Roberts algorithm [8, p. 23]. The time com-

S . : lexity of the algorithm isO(C'M L). The complexity is linear
of which videos to cache. Through extensive numerical expeﬁ the bandwidtiC' of the bottleneck link and the number of ob-

iments we have found that all our heuristics perform well an| ts1/. which be h Th lexitv is also | inth
that the best performance is obtained with the revenue dendfty™>-4 » Which can be huge. 1he complexity1s aiso linear in the
mber of encoding layeis, which is typically small (2 — 5).

heuristic. Our heuristics are useful for cache operators in bat
provisioning the caching system as well as deciding on-line the REFERENCES
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