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Abstract— Multimedia traffic can typically tolerate some loss but has
rigid delay constraints. A natural QoS reguirement for a multimedia con-
nection is a prescribed bound on the the fraction of traffic that exceeds
an end-to-end delay limit. We propose and analyze a traffic management
schemewhich guar antees QoSto multimedia traffic whilesimultaneously al-
lowing for alarge connection—carrying capacity. We study our traffic man-
agement scheme in the context of a single node. In order for the node to
guarantee QOS, each connection’s traffic is regulated. In order to support
many connections, thelink statistically multiplexes the connections' traffic.
The scheme consists of (i) cascaded leaky—buckets for traffic regulation, (ii)
smoothersat theingresses, and (iii) bufferlessstatistical multiplexing within
thenode. For thisschemewe show that |oss probabilities areminimized with
simple one-buffer smoothers which operate at specific minimum rates. We
also show that the wor st—case input traffic is extremal on—off traffic for all
connections. These two results lead to a straightforward scheme for guar-
anteeing QoStoregulated traffic. Using M PEG video traces, we present nu-
merical results which demonstrate the methodology. Finally, we compare
the bufferless scheme with buffered statistical multiplexing.

Keywords— Bufferless Multiplexing, Call Admission Control, Multime-
diaTraffic, Regulated Traffic, Statistical M ultiplexing, Statistical QoS, Traf-
fic Smoothing.

|. INTRODUCTION

VER the past ten years, significant research effort has ad-

dressed the important problem of guaranteeing QoS to
multimedia traffic in a packet—switched network. The goal has
been to devel op traffic management schemesthat allow for high
link utilizations while simultaneously guaranteeing that the QoS
requirements of the ongoing connections are met. It is gener-
ally agreed that high link utilizations can only be achieved by
allowing traffic to be statistically multiplexed, i.e., by alow-
ing each connection’straffic to have a small amount of loss and
exploiting the statistical independence of the connections’ traf-
fic [1][2][3][4]. It is aso the view of many researchers that
QoS can only be guaranteed by requiring the traffic to be reg-
ulated (e.g., by leaky buckets) at the edges of the network [5][6]
[7][8][9][10][11].

In recent years the problem of providing QoS guarantees to
regulated sources which are statistically multiplexed in ashared
buffer has been carefully studied [9][10][11]. The existing so-
[utions, however, do not extend to the network environment in
a satisfactory manner. Also in recent years, the problem of pro-
viding end—to—end deterministic guarantees to regulated traffic
in networks has been adequately solved [12][13][7][8]. The de-
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terministic QoS guarantees, however, typically imply a small
connection—carrying capacity for networkswith bursty multime-
dia traffic. In this paper we lay the groundwork for a traffic—
management architecture that provides end—to—end statistical
QoS guarantees. We focus our attention to a network consisting
of asingle nodein this paper. We extend the traffic management
to networksin a subsequent paper [14].

In this paper we view traffic as fluid. The fluid model, which
closely approximates a packetized model with small packets,
permits us to focus on the central issues and significantly sim-
plifies notation. We suppose that the traffic sent into the node by
each connection is regulated by a connection—specific cascade
of leaky buckets. A cascade of leaky buckets is more general
than the two— eaky—bucket regulator, commonly used in the lit-
erature [9][10], and can more accurately characterize a source’s
traffic. Moreover, cascaded- eaky—bucket traffic can easily be
policed. For admission control, al that we know about a con-
nection’straffic isits regulator constraint defined by its cascade
of leaky buckets; in particular, we do not have available statisti-
cal characterizations of the traffic.

We aso assume that the following natural QoS requirement
isin force: the fraction of traffic that exceeds a specific delay
limit must be below a prescribed bound. Traffic which over-
flowsat abufferisconsidered as havinginfinite delay, and there-
fore violates the QoS requirement. |mportantly, we permit each
connection to have its own limit on the nodal delay and its own
bound on the fraction of traffic that exceedsthisdelay limit. This
QoS requirement is particularly appropriate for multimediatraf-
fic, whereby timestamping and a playout buffer can ensure the
continuous playout of video or audio without jitter.

Given each connection’s traffic characterization and its QoS
requirement, we address the following problem: How should
we manage the traffic and perform admission control in or-
der to guarantee QoS while maintaining a large connection—
admission region? We advocate the following simple and prag-
matic scheme: (i) smooth each connection’s traffic at the con-
nection’s input as much as alowed by the connection’s delay
congtraint; (i7) employ bufferless statistical multiplexing within
thenode; (444) base admission control on the worst—case assump-
tion that sources are adversaria to the extent permitted by the
connection’sregulator, while concurrently assuming the connec-
tions generate traffic independently. This scheme enjoysthefol-
lowing features:



« Admission control is solely based on the connections' reg-
ulator parameters, which are policable. It is not based on
more complex, difficult—to—police statistical characteriza-
tions.

« Italowsfor statistical multiplexing at the node while meet-
ing the QoS requirements. The smoothing at the input in-
creases the statistical multiplexing gain.

« Itallowsfor per—connection QoSrequirements: the connec-
tions can have vastly different delay and loss requirements.

« Because the multiplexing is bufferless, the switch re-
quiresonly small input buffers (when traffic is packetized),
thereby reducing switch cost.

« A connection’s traffic characterization does not change as
the traffic passes through the bufferless multiplexer.

Itisthislast featurethat is particularly useful when extending
thetraffic management schemeto amultihop network [14]. With
our scheme the traffic leaving the network node conformsto the
same regulator constraints as the traffic entering the node. With
shared buffer multiplexers it is difficult (if not impossible) to
tightly characterize a connection’s traffic once the traffic passes
through a shared buffer.

This paper is organized as follows. In Section I we formally
define the cascaded leaky—bucket regulators and the QoS re-
quirement. In Section |1l we determine the worst—case traffic
for asingle-link and outline our smoothing and admission con-
trol procedure. We also consider general smoothers and show
that the optimal smoother is a single-buffer smoother which
smoothestrafficasmuch asthedelay limit permits. In Section 1V
we present humerical results using MPEG—encoded traces. In
Section V we compare our scheme to designs based on buffered
statistical multiplexing. We concludein Section VI.

Il. REGULATED TRAFFIC AND THE QOS REQUIREMENT

In this paper we focus on a single node consisting of a buffer-
less multiplexer that feeds into a link of capacity C. We view
traffic as fluid, i.e., packets are infinitesimal. Consider a set of
J connections. Each connection j has an associated regulator
function, denoted by £;(¢), ¢ > 0. The regulator function con-
strains the amount of traffic that the jth connection can send
into the node over all timeintervals. Specificaly, if A;(t) isthe
amount of traffic that the jth connection sends to the node over
theinterval [0, ¢], then A;(-) isrequired to satisfy

Aj(t-i-T)—Aj(T)ng(t) foral >0, t>0. (1)
A popular regulator is the simple regulator, which consists of a
peak—rate controller in serieswith aleaky bucket; for the simple
regulator, the regulator function takes the following form:

£;(t) = min{pjt, oF + pt}.

For a given source type, the bound on the traffic provided by the
simple regulator may be loose and lead to overly conservative
admission control decisions. For many source types (e.g., for
VBRvideo), it is possibleto get atighter bound on the traffic and
dramatically increase the admission region. In particular, regu-
lator functions of the form

. 5 . L L
E;i(t) = mln{p}t, 0]2- + pjt, oy 0 +p7t} 2

are easily implemented with cascaded leaky buckets; it is shown
in (see [6]) that the additional leaky buckets can lead to sub-
stantially larger admission regions for deterministic multiplex-
ing. We shall show that thisis also true for statistical multiplex-
ing. Throughout this paper we assume that each regulator has
the form (2). Without loss of generality we may assume that
ph>p2 > o> plando? < o < - < o). Forease
of notation, we set p; = pJL-’. Note that for connection—; traffic,
thelong—run averagerateis no greater than p; and the peak—rate
is never greater than p}.

Each connection also has a QoS requirement. In this paper
we consider a QoS requirement that is particularly appropriate
for multimedia traffic, such as audio and video traffic. Specifi-
cally, each connection has a connection—specific delay limit and
aconnection—specificlossbound. Denoted; and ¢, for the delay
limit and lossbound for the jth connection. Any traffic that over-
flows at a buffer is considered to have infinite delay, and there-
foreviolatesthe delay limit. The QoS requirementisasfollows:
for each connection j, the long—run fraction of traffic that is de-
layed by more than d; seconds must be lessthane;.

This QoS requirement can assure continuous, uninterrupted
playback for a multimedia connection as follows. Each bit (or
packet for packetized traffic) is time-stamped at the source. If a
bit from connection j is time-stamped with value x, the bit (if
not lost in the node) arrives at the receiver no later than z + d;.
The receiver delays playout of the bit until time z + d;. Thus,
by including a buffer at each receiver, the receiver can playback
amultimedia stream without jitter with a fixed delay of d; and
with bit loss probability of at most ¢;.

The strategy that we takein this paper isto pass each connec-
tion’s traffic through a smoother at the connection’sinput to the
node. We design the smoother for the jth connection so that the
jth connection’straffic is never delayed at the smoother by more
than d;. After having smoothed a connection’s traffic, we pass
the smoothed traffic to the node. At the link the connection’s
traffic is multiplexed with traffic from other connections. The
second aspect of our strategy is to remove all of the buffersin
the node; that is, we use bufferless statistical multiplexing rather
than buffered multiplexing beforethelink. In our fluid model, a
connection’s traffic that arrives to a bufferless link either flows
through the link without any delay or overflows at the link, and
therefore has infinite delay. In order to satisfy the jth connec-
tion’s QoS requirement, it therefore suffices that the fraction of
connection—j traffic that overflowsthelink belessthane ;. Also,
if the loss at the link is small, we can reasonably approximate
a connection’s traffic at the output of the multiplexer as being
identical to its traffic at the input to the multiplexer. In other
words, a connection that satisfies the regulator constraint £ ()
at the input of the node satisfies the same regulator constraint
£;(t) at the output of the node. Our scheme extends therefore
in a straightforward manner from a single node to ageneral net-
work of bufferless multiplexers with smoothers at the network
ingresses [14]. Our approachisillustrated in Figure 1.

For the smoother at the jth connection’sinput, initially we use
a buffer which serves the traffic at rate ;. When the smoother
buffer is nonempty, traffic is drained from the smoother at rate
c;. When the smoother buffer is empty and connection—j’straf-
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Fig. 1. Thetraffic of the jth connection is characterized by the regulator func-
tion £;(t). The traffic is passed through a smoother with rate ¢; and then
multiplexed onto alink with capacity C'.

ficisarriving at aratelessthan ¢}, traffic leavesthe smoother ex-
actly at the rate at which it enters the buffer. For the fluid model
and QoS criterion of this paper we shall show that more complex
smoothers consisting of cascaded leaky buckets do not improve
performance.

Using the theory developed in [15], it can be shown that the
maximum delay at the smoother is

E;(1)
%%{75"%}~ @

Also, because the bufferless multiplexer and link introduce no
delays, traffic from the jth connection that flows through the
node without loss has the maximum delay of the smoother. We

set the smoother rate to
ﬁQ—ﬁs@}, @

cj_min{cj >021’I’1&X{
C4
J

t>0
so that the traffic that passes through the node (i.e., traffic which
does not overflow at the link) is not delayed by morethan d;. It
isstraightforward to show from (4) that the smoother rate can be
expressed as

. _ £;(t)
G =M ©

I11. GUARANTEEING STATISTICAL QOS

We focus in this paper on a single link with .J connections.
Connection j has aregulator constraint function £ ;(t) and QoS
parameters d; and €;. Now regard the jth arrival process as a
stochastic process. Let (A4;(t), ¢ > 0) denote the jth arrival
process, and let (A;(¢,w), t > 0) denote a realization of the
stochastic process. Alsolet A(t) = (A1(t),...,A;(t)), andlet
(A(t), t > 0) bethe associated vector stochastic arrival pro-
cess. We say that the vector arrival process (A(t), t > 0)is
feasibleif (i) the component arrival processes (A;(t), t > 0),
j=1,...,J,aeindependent, and (i) foreachj = 1,..., J,
each realization (A;(t,w), t > 0) satisfies the regulator con-
straint

Aj(t+ T,w) — Aj(’l',u)) < gj(t) foralT>0, t>0. (6
Denote A for the set of al feasible vector arrival processes
(A(t), t >0).

Our first goal isto develop a straightforward procedureto de-
termine whether the QoS requirements are met for all possible
feasible stochastic arrival processes. For afixed feasible vector
arrival process (A(t), t > 0), let U;(t) be the rate at which
traffic from the jth connection leaves the associated smoother
at time ¢, and let U; be the corresponding steady—state random
variable. Consider multiplexing the traffic streams U;(t), j =
1,...,J onto abufferless multiplexer of rate C. The long—un
average fraction of traffic lost by connection j is

, E|(Ci Uk = O) =i
meo (]) —

loss

E0] )
In the definition of Pinf(j) we make the natural assumption
that traffic loss at the bufferless multiplexer is split between the
sourcesin amanner proportional to the rate at which the sources
send traffic into the multiplexer. Note that Pinf(;) keeps track
of loss for each individual connection.

Although Pinf(5) is an appealing performance measure, we

loss

havefound it to be mathematically unwieldy. Instead of P ()

loss
we shall work with abound on P2 () which is more tractable
and which preserves the essential characteristics of the origi-
nal performance measure. Noting that the term in the expec-
tation of the numerator of eguation (7) is non—zero only when

S Ux > C, weobtain:

E[(S] U - o))

info/ - <

0SS

= F)loss (]) . (8)

In most practical circumstances the QoS requirement specifies
traffic loss to be miniscule, on the order of ¢; = 107 or less.
Thus we expect the bound to be very tight: during the rare event
when ", U; exceeds C', weexpect 37, U; to bevery close
to C. Henceforth, we focus on the bound Pj.ss(7), and we refer
to Poss (j) astheloss probability for the jth connection. Weem-
phazise herethat the bound (8) isacrucial and important step for
the techniques taken in this paper. To our knowledge, no other
authorshave made direct use of thisimportant bound. In Section
5 we provide numerical results which show that Pjoss(7) isvery
nearly equal to the actual loss probability Pinfe(y).

By taking the supremum over all thefeasible vector stochastic
processes, we obtain thefollowing worst—caseloss probability of
the jth connection:

. EB[Elu-ory)
¢ = Sllélp C - E[U)]

(9)

If ¢; <, foralj =1,...,J, thenthe QoS requirements are
guaranteedto be met for all feasible vector arrival processes, that
is, for al independent arrival processes whose sample paths sat-
isfy the regulator constraints. In our strategy, at connection ad-
mission we determine whether ¢ < ¢; foral j = 1,....J
will continue to hold when adding the new connection. If not,
the connection is rejected. Thus, we need to develop an effi-
cient method to compute the bounds ¢7, . . ., ¢%. Asafirst step
in computing these bounds, we need to explicitly determine the
random variables Uy, . . ., U that attain the supremumin (9).



Lemmal: LetU;,...,Uj; beindependent random variables,
with U having distribution

. ¢ with probability £
U=\ 0 withprobability 1— 2 .

J

Thereexists afeasible vector arrival processwhich producesthe
steady—state rate variables U7, . . ., U; at the smoother outputs.

Proof:  The proof is by construction. For each j =
1,...,J,let
2
ty= —2
p; =5

and L

P59

A
Alsolet6,,. .., 6, beindependent random variableswith §; uni-

formly distributed over [0, T}]. Let b;(t) be adeterministic peri-
odic function with period T'; such that

1
. _ P; 0<t<ty
bf(t)_{o t; <t<Tj.

Definethe jth arrival stochastic process as

Aj(t) = /Ot bJ(S + Gj)ds

Thus each component arrival process (A4,(t), ¢ > 0) is gen-
erated by a periodic on—off source; the jth process has peak—
rate p} and averagerate p;. By sending each component process
(A;(t), t > 0) into its respective smoother, we obtain an on—
off process whose peak—rateis ¢ and whose averagerate is p;.
Also, the component processes are independent; thus the vec-
tor arrival process produces the steady—state random variables
Uy, ..., U; a the smoother outputs.

It remains to show that each reslization of (A;(t), t > 0)
satisfiestheregulator constraint (6). It followsimmediately from
the definition of b;(t) that

t
/ b](s)dsgé’](t) fOfa”OStSTj. (10)
0
We can, in fact, show that
t
0

To seethis consider any arbitrary ¢t = nT}; + s, wheren issome
non-negativeinteger and 0 < s < T};. We have

/Ot bj(s)ds =

T; nT}
/ bi(s)ds+ ...+ / b;(s)ds
0 (n=1)T;

n—1
nTj+s
+ / b;(s)ds

TJ
nTjp; + &;(s)
[E;(nT; +5) = E;(s)] + E5(s)
- &)

The first inequality follows from (10) and from the fact that the
averagerateof b;(t) over any period of length T; is p;. The sec-
ond ineguality follows because the slope of £,(t) is never less
than p;. This establishes (11). Finally because b,(t) is non-
increasing over each of its periods, we have

thr t
/ bj(s)ds < / bij(s)dsfordl™>0, t>0. (12)
T 0

Combining (11) and (12) proves that each
realization of (A4,(t), t > 0) satisfies the regulator constraint
(6).
|

We now show that therandomvariablesUy, . . ., U} attainthe
supremum in (9). Thisresult will lead to a simple procedurefor
calculating the worst—case loss probabilities ¢, . . ., ¢%. Tothis
end, we will need to make use of a concept from stochastic or-
dering. A random variable X issaid to be smaller than arandom
variable Y in the sense of the increasing convex stochastic (ics)
ordering, writtenas X <,., Y, if E[h(X)] < E[h(Y)] for dl
increasing, convex functions (-).

Theoreml: Foreachj = 1,2,...,J, the worst—case loss
probability for the jth connectionis

. B[l ui-ory]
9= C - E[U]
Proof: Leti/ bethe set of al random vectors (Uy, . ..
such that

1 U;,j=1,2,...,J areindependent.

2. OSE[U]] gpjandOSUj gc;forallj: 1,2,,...,J.
All feasible vector arrival processesin A give steady—state rate
variablesthat belongto /. Let (U4, ..., U ) bearandom vector
inU. LetU =U; +---+U;andU* = U +---+ Uj. We
need to show that

Uy)

E[(U - C)*Uj]
CEL;]  —

E[(U* - O)*U]
CE[U]

(13)

FLx 1, witp 1 < < J, and con§ider the random vector
(Uy,...,Uy)suchthat U; = U andU; = U, for j # i. Note
that (Uy,...,U,) € U. Wefirst show that for each fixed j,

E[(U - O)U,]

E[(U - C)*tU;j]
< .
CE[U)]

CE[U;]

(14)

Considerthecase: # j. LetV = U — U; — U;. LetdFy (-)
and dFy, (-) bethe distribution functionsfor V and U;. Noting
that U;, U; and V' are independent, we have

E[(U - C)*U;) = E[(U; + V + U, — C)* U]

- / - / " BI(U, + v + u - O)uldFy (v)dFy, (u)

Thefunction f(z) = (z+v+u—C)*u withintheexpectationis
anincreasing, convex functionin x for each fixed v and u. Thus,
becauseU; <;.. U, (e.g., seeProposition1.5.1in[16]), we have

E[(Ui +v+u—C) '] < E[(U; + v +u—C)



for al v and u. Combining the above two equations gives
E[(U - C)"U,] < E[(U - C)* T,

which, when combined with E[U;] = E[U,], gives (14).

Now consider thecasei = 5. Let W = U — U,. UsingU; <
¢}, theindependence of W and U;, and the independence of W
and U;, we obtain

E[(U-0O)tUi] E(W +U: - CO)tUy
CE[U,] B CE[U]
< ElW+c - O EU)
_ E[((W+¢ - O] E[U]
- ¢ E[T]
_ E[(W+¢q - )]
- CE[U}] '
Also
E(U-0)tU) = E[(W+U,—C)tU)

= E[(W +c -0)tUy).

Combining the above two equations gives (14) for i = j.

Thus (14) holdsfor al i =1, ..., .J. Therefore, starting with
the original vector (Uy,...,Uy) € U we can replace U; with
U7 and obtain a new vector in ¢/ such that (14) holds. Rename
this new vector as (U, ..., Uy). We can repeat the procedure,
thistimereplacing U, with U, and again obtaining anew vector
inU such that (14) holds. Performing this procedurefor al i =
1,...,J gives(13). ]

Using the fact that U isa Bernoulli random variable, we ob-
tain from Theorem 1 the following expression for the bound of
F)loss (])

E [<Zk¢j U +¢; - cﬁ}
05 = C

We can compute these bounds directly by convolving the distri-
butions of the independent random variables. An efficient ap-
proximate convolution algorithm is presented in [17]. We can
also obtain an accurate approximation for the right—hand side of
(15) by applying large deviation theory to the expectation in the
numerator: To thisend let

(15

puz (s) :==In E[eSU:].

Note that yy»(s) is the logarithm of the moment generating
function for U};. We define

Ut =>"Uy.
Py
Note that
poe(s) =Y pue(s)
k3

by the independence of the U;’s. The large deviation (LD) ap-
proximation gives the following approximation for ¢ [1]

1
21y (s*)

e (C=ci)tpy=(s7)
b
Cs*2

where s* is the unique solution to
pyr-(s*) = C = ¢j.

The LD approximation is known to be very accurate [1], [4],
[18], [9], [19] and isal so computationally very efficient. We use
the LD approximation for the numerical studiesin this paper.

In summary, (15) is a smple expression for the worst—case
loss probability ¢7; this simple expression involves the inde-
pendent Bernoulli random variables Uy, . .., U3}, whose distri-
butions we know explicitly. The LD approximation for (15) is
highly accurate and is easily calculated. For admission control,
we advocate using the LD approximation to calculate ¢ and
then verifying the QoS requirement, i.e., verifying in realtime
whether ¢7 <e¢; foral j =1,....J.

At thisjuncturewe note someimportant related work by Doshi
[20]. He studies worst—case, unsmoothed traffic that maximizes
an aggregate loss ratio, where the aggregation is taken over all
sources. For this criterion he discovers a number of anomalies;
in particular, extremal on—off sources are not alwaysworst case.
With our bound Pi.(j) (8) the loss is maximized by the ex-
tremal on—off sources, which greatly simplifies admission con-
trol. Furthermore, as we show in this paper, smoothing of traffic
can significantly expand the admission region.

A. The Optimal Smoother

Up to this point we have assumed that the smoother for each
connection j consists of asingle buffer that limits the peak—rate
of the smoother output to c;. In this subsection we study more
general smoothers, namely, smoothers that consist of a cascade
of leaky buckets. The smoother for connection j, defined by a
function S, (t), constrains the amount of traffic that can enter
the network over any timeinterval. Specificaly, if B;(t) isthe
amount of traffic leaving smoother 5 over theinterval [0, ¢], then
B, (t) isrequired to satisfy

B;(t+71) — B;(t) < 8;(t) foralt>0, r>0.

We assume throughout this section that the smoother functions
are of theform

S;(t) = min {s?+rft}

1<k<M; (16)

Withr} > r? > e > r;w’ and0 = s} < sj < e < 5;\4’
These piecewise linear, concave smoother functions can be eas-
ily implemented by a cascade of leaky buckets. The single—
buffer smoother defined in Section 2 isaspecial casewith M ; =
1, s} =0andr} =cj.

We say that a set of smoothers (S1(t), ..., S;(t)) is feasible
if the maximum delay incurred at smoother j is < d; for all
j =1,...,J. By definition the set of smoothers (cit, ..., c}t)
studied earlier is feasible. Now fix a feasible set of smoothers
(S1(t),...,S(t)), and let the regulated traffic from the J con-
nections pass through these smoothers. Let

B |($io, Uk = €)*U;)
C - E[Uj]

¢j = Sjp (17)



be the associated worst—case loss probability. Recall that ¢7 is
the same worst—case |oss probability but with the traffic passing
throughthe set of smoothers(cit, . .., ¢’t). Theproof of thefol-
lowing result is provided in the appendix.

Theorem2: ¢; < ¢; forall j = 1,...,J. Thusthesingle-
buffer smoothers with ¢; = ¢; minimize the worst—case loss
probability over all feasible sets of smoothers.

It follows from Theorem 2 that the more complex smoothers
consisting of cascaded leaky buckets do not increase the con-
nection carrying capacity of the network. Thus without loss
of performance, we may use the simple smoothers of the form
(c1t, ..., cyt). Furthermore, Theorem 2 verifies the intuition
that in order to maximizethe admission regionthe smoother rates
are as small as the delay constraints permit, that is, ¢; = ¢; for
j=1,...,J.

B. A Heurigtic for Finding a Leaky Bucket Characterization of
Prerecorded Sources

In this subsection we discuss how to obtain agood characteri-
zation £ ;(t) of asourcefor agivenrestriction L; on the number
of leaky buckets. For any given characterization & ;(t) we use
at the network edge a single-buffer smoother with rate c; given
by (5). Our god isto find a characterization £ ;(t) that has at
most L; slopes (i.e., L; cascaded leaky buckets) and attemptsto
minimize both p; and ¢;. From Theorem 2 we know that min-
imizing p; and ¢; minimizes the worst—case |oss probabilities,
and thereby maximizes the connection—carrying capacity of the
network.

We develop the heuristic for determining the characterization
£,(t) in the context of prerecorded sources. These sources in-
cludefulldength movies, music video clips and educational ma-
terial for video—on—demand (VoD) and other multimedia appli-
cations. Itiswell known how to computethe empirical envelope
for prerecorded sources [6], [21]. The empirical envelope gives
thetightest bound on the amount of traffic that can emanatefrom
aprerecorded sourceover any timeinterval. Theempirical enve-
lope is however not necessarily concave, and therefore we may
not be ableto characterizeit by acascade of leaky buckets. How-
ever, applying the algorithms of Knightly et al. [6] or Grahams
Scan [22], we can compute the concave hull of the empirical en-
velope. The concave hull for connection—j traffic, denoted by
H,;(t), takesthe form

H;(t) = 15111'12\',{0; + pit}.

(18)

Here, K; denotesthe number of piecewiselinear segmentsinthe
concave hull. Without loss of generality we may assume 0]1 <
or< <o andpl > pl > > pl

The number of segments in the concave hull can be rather
large. The “ Slence of The Lambs’ video segment used in our
numerical experiments, for instance, has a concave hull consist-
ing of 39 segments. Thisimpliesthat 39 leaky bucket pairs are
required to police the tightest concave characterization of the
“ Slence of The Lambs’ video segment. Our goal is to find a
more succinct characterization of prerecorded sources in order
to simplify call admission control and traffic policing.

Suppose that asourceis alowedtouse L, (L; < K;) lesky
bucketsto characterizeitstraffic. We now present aheuristic for

the following problem: Given a source’s concave hull 7 ;(t) =
minlging {0‘; —I—p;t} and thedelay Ilmltd], find L]‘ Ieaky buck-
ets (out of the K; leaky bucket pairs in the concave hull) that
maximize the admission region.

We illustrate our heuristic for thecase L; = 2. For L; = 2
the traffic constraint function takes the form

&;(t) = min{o™ + p¥t, o7 + pt}

with 1< aj,bj < Kj, (19)
where the indices a; and b; are yet to be specified. Our strat-
egy isto first choose the leaky bucket that has the tightest bound
on the average rate (i.e., minimize p;), and then choose another
leaky bucket which minimizes the smoother rate c;. Let ri*
denote the average rate of the prerecorded source. We found in
our numerical experimentsthat some of the leaky bucket pairsin
the concave hull (particularly those with high indices) may have
sopes < rivc. Wesetb; = max{i : pj- >rive, 1<i < K;}.
In words, we use the highest indexed leaky bucket with a slope
larger than r5V° to specify the sources’ averagerate.

In order to find the leaky bucket indexed by a; we consider
all leaky buckets (07, p%) with1 < i < b;. We compute the
smoother rates obtained by combining each of the leaky buckets
(0i, p%), 1 < i < b; withthelesky bucket (o7, o) and select
theindex i that gives the smallest smoother rate — and thus the
largest admission region. More formally, let cji, 1 <14 <by,
denote the minimal smoother rate for traffic with regulator func-
tion £;(t) = min{o} + pit, ajf + pz’-ft} and delay bound d;.
By (5) we have

min{a} + pét, 0?’ + pl]).’t}
dj +t ’

c] = max
>0

We can obtain amore explicit expression for c;fi. Since

T ol +pit  for0<t<t,
min{oj +pjt, o) +p;t} = { o +;".Jt fort > t;
J J =

witht; = (07 — o)/ (p% — p7’), we have

b b,
o +pjt
dj +t

L]

P i
it o= maxlmax J_ ") max
t>t;

! o<t<t; dj +t

The expressions inside the max[-] can be further simplified. It
can be shown that

o + pit - ifd; < -
max = y i
o<t<t; d;+t oitejti fd. > 7
J . bl l 7 i
i+t P
and
iy iy by
agitpjti o
b. b J J . < J
o' +pj't dj+t; It d; o
S d vt ) o iz
R . o. o
="t J J . J
& ifd; > .

We set the smoother rateto min; <, ¢;* and set a;; to theindex
that attains this minimum.



We now briefly discuss how to find the optimal regulator func-

tion consisting of 3 or more leaky buckets. First, note that there
by —1

xe( V70)
This can be computationally prohibitive. The heuristic can be
sped up by considering only regulator functions consisting of
L; — 1 consecutive leaky buckets of the concave hull and the
leaky bucket (aﬁf p?-j). Inthecase L; = 3, for instance, we
compute the minimal smoother rates only for the regulator func-

tions £;(t) = min{o} + pit, o7 + pit'e, a?’ + pﬁjt} with
1 <4 < b; — 1. This speed—up of the heuristic can produce a
suboptimal regulator function. Our numerical experiments (see

Section 1V), however, indicate that it works surprisingly well.

combinationsof leaky bucket pairsto consider.

C. Interaction between Application and Network

In this subsection we discuss how the responsibilities of
smoothing, call admission control and traffic policing can be
shared by the application and the network. Call admission con-
trol is the responsibility of the network. Before accepting a new
connection, the network hasto ensurethat the QoS requirements
continueto hold for all established connectionsand the new con-
nection. Policing is also a hetwork responsibility. The network
edge hasto police all established connectionsin order to ensure
that all connections comply with their respective regulator func-
tion advertised at connection establishment. While call admis-
sion control and traffic policing are responsibilities of the net-
work, smoothing can be performed by either the application or
the network. Werefer to the case where the application performs
the smoothing and sendsthe smoothed traffic to the network edge
as application smoothing. The case where the application sends
its unsmoothed traffic to the network edge and the network edge
performs the smoothing is referred to as network smoothing.

With application smoothing the application
internally smoothes its traffic. Based on the regulator function
of its traffic and the maximum delay it can tolerate, the applica-
tion finds the minimum smoother rate by applying (5). Sincethe
smoothing is done by the application, thereis no need to reduce
the number of leaky buckets used to characterize the traffic by
applying the heuristic outlined in Section 111-B. Instead, the con-
cave hull of aprerecorded sourceis used directly for dimension-
ing its smoother. The application advertises the regulator func-
tion&;(t) = min{cit, o’ +p;’t} andthedelay bound d; = 0
to the network. We remark that this dual leaky bucket regulator
function has been adopted by the ATM Forum [23] and is being
proposed for the Internet [24]. The network does not have to be
aware of the smoothing done by the application. The network
edge dimensions its own smoother based on £ ;(t) and d; = 0.
Since d; = 0 the networks' smoother degenerates to a server
with rate ¢ preceded by a buffer of size zero.

With network smoothing the application advertisesits regula-
tor function and maximumtolerable delay to the network. Prere-
corded sources apply the heuristic of Section |11-B when the net-
work restricts the number of leaky buckets to a number smaller
than the number of segments in the concave hull. The network
edge dimensions the smoother based on the regulator function
and delay bound supplied by the application. Call admission
control isbased on the assumption of worst—case on—off traffic at

TABLE|
STATISTICSOF MPEG-1 TRACES.
Trace Mean (bit) Mean | Peak/Mean
bitgframe | kbits/sec
lambs 7,312 171.2 184
mr.bean 17,647 4235 13.0
TABLEII

PARAMETERS OF THE OPTIMAL LEAKY BUCKET CHARACTERIZATION WITH
2 LEAKY BUCKETSAS A FUNCTION OF THE DELAY BOUND FOR THE LAMBS
TRACE. THE AVERAGE RATE IS CHARACTERIZED BY THE 34TH LEAKY
BUCKET, I.E., blambs = 34, WITH PARAMETERSaf;;*;“b’;S = 3,157.8 KBYTE
AND pf;ﬁ}: = 208.8 KBIT/SEC FOR ALL DELAY BOUNDS.

dlambs QAlambs O-laa];;rllags p gflllri)bss cl*ambs
Sec. kByte | kbit/sec | kbit/sec

0 1 0| 34748 | 34748
0.042 2 13.3 939.3 | 2535.5
0.125 2 133 939.3 939.0
0.250 4 235 802.2 801.9
0.500 8 43.5 711.0 710.8
1.000 10 69.9 676.9 674.7

the smoother output. The network edge policesthe applications
traffic before it enters the smoother and drops violating traffic.

IV. NUMERICAL EXPERIMENTS

In this section we evaluate the smoothing/bufferless multi-
plexing scheme proposed in this paper using traces from MPEG
encoded movies. In al experimentswe consider asingle buffer-
less multiplexer which feeds into a 45 Mbps link. We obtained
the frame size traces, which give the number of bits in each
video frame, from the public domain [25]. (We are aware that
these are low resolution traces and some critical frames are
dropped; nevertheless, the traces are extremely bursty.) The
movies were compressed with the Group of Pictures (GOP) pat-
tern IBBPBBPBBPBB at a frame rate of F' = 24 frames/sec
[25]. Each of the traces has N = 40,000 frames, correspond-
ing to about 28 minutes. The mean number of bits per frame
and the peak-to—meanratio aregivenin Table V. Let z,,, n =
1,..., N, denote the size of the nth frame in bits. We convert
the discrete frame size trace to a fluid flow by transmitting the
nth frame at rate =, F' over theinterval [n — 1/F,n/F].

We first evaluate the heuristic of Section I11-B. We compute
the empirical envelope and the concave hull of each trace using
the algorithms of Knightly et al. [6]. Based on the concave hull
of each video we compute the minimal smoother rate c;. We
also apply the heuristic of Section 111-B to the concave hull in or-
der to find the optimal leaky bucket characterization with 2 and
more leaky buckets. (We apply the speed—up described in Sec-
tion 111-B for the leaky bucket characterizations with 3 or more
leaky buckets.)

The heuristic of Section 111-B produced the optimal leaky
bucket characterizations given in Table Il for the lambs trace.
Thetable givestheindex aj.mps and the parameters of the leaky
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Fig. 2. Number of video connections as a function of the delay bound. The
videos are characterized by the concave hull or theoptimal leaky bucket char-
acterization with 2 leaky buckets. Thebound on the loss probability is10~7.

bucket (oy2mb=, pilemr=) for various delay bounds. The aver-
agerateis characterized by the 34th leaky bucket in the concave
hull, i.e., bi.mbs = 34, for al delay bounds. Thetable also gives
the minimal smoother rates for the various delay bounds. For a
delay bound of zero, the smoother rate is set to the rate of the
first leaky bucket, i.e., the peak—rate of the trace. For djamps =
0.042 sec (= 1/ F) thetraceis characterized by the 2nd and 34th
leaky bucket of the concave hull (@jambs = 2, blambs = 34).
Note that diambs < of.2mbe /pllambs jn this case and clambs =

O'I(lallaﬁ?)l;s /dlambs- For diamns > 0.125 sec we have diambs >

Qlambs Alambs k — Alambs Alambs .
Olambs /plambs and Clambs — (J] + p] talambs)/(d] +
t

Qlambs /*

Assuming worst—case on—off traffic, the smoother outputsare
gtatistically multiplexed onto the bufferlesslink as discussed in
the previous sections. We set e; = 107 for al connections. In
Figure 2 we plot the number of admissible video connections as
a function of the delay bound. The graph gives the number of
admissible video connections when the videos are characterized
by the concave hull or the optimal leaky bucket characterization
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Fig. 3. Number of lambs connections as a function of the delay bound and the

number of leaky buckets (LB). Plots shown arefor Knightly et al. (KLZ) and
our gpproach (RRR).

with 2 leaky buckets. We observe from the plots that the opti-
mal leaky bucket characterization with 2 leaky buckets admits
almost as many video connections as the more accurate concave
hull characterization. The curvesfor 3 or moreleaky buckets co-
incide with the curve for the concave hull.

In the next experiment we compare the admission region of
our approach with the admission region obtained with the de-
terministic admission control condition of Knightly et al. [6].
Note that the deterministic approach of Knightly et al. is loss-
less and guarantees that no bit is delayed by more than the pre-
specified delay limit in the multiplexer buffer. Our approach,
on the other hand, exploits the independence of traffic emanat-
ing from the J connections. The videosare passed through sim-
ple smoothers with ¢; = ¢;. The smoother outputs — assum-
ing worst—case on—off traffic— are then statistically multiplexed
onto the bufferlesslink, as discussed in the preceding sections.
Wesete; = 1077 for al connections. Losses this small have
essentially no impact on the perceived video quality and can be
easily hidden by error conceal ment techniques [26].

In Figure 3 we plot the number of admissible lambs connec-
tions as a function of the delay bound. The graph gives the
number of lambs connectionsthat are admitted with the our ap-
proach (RRR) when 2 or 3 leaky buckets (LB) are used to char-
acterize the video trace. As we just saw in Figure 2 the opti-
mal leaky bucket characterizationwith 3 leaky bucketsadmitsas
many connections as the concave hull, the most accurate, con-
cave characterization of the video; using more leaky buckets
does not increase the admission region. We also plot the num-
ber of lambs connectionsthat are admitted with the approach of
Knightly et al. (KLZ) when 2, 3, 8 or 16 |leaky buckets are used
to characterize the trace. We observe that for delays on the or-
der of 0.5 seconds or more, the number of admissible connec-
tions significantly increases as the number of leaky buckets used
to describe the trace increases. The approach of Knightly et al.
thusgreatly benefitsfrom amore accurate characterization of the
video — achieved by more leaky buckets.

The main result of this experiment, however, is that our ap-
proach allows for more than twice the number connections than
does the approach of Knightly et al. For example, for a delay
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Fig. 4. Admission region for the multiplexing of lambs and bean connections
over a45 Mbps link.

bound of 1.1 seconds, Knightly et al. admit 69 connections ( =
29.6 % averagelink utilization) with 16 leaky bucketswhile our
approach admits 146 connections ( = 62.7 % average link uti-
lization) with 3 leaky buckets. We obtain this dramatic increase
in the admission region by exploiting the independence of the
sources and allowing for asmall loss probability.

In Figure 4 we consider multiplexing two different movies,
beans and lambs, each with its own delay constraint. We again
assume a 45 Mbpslink. We use delay bounds of dj.mps = 125
ms or 1.25 seconds and dpe.n, = 125 msor 1.25 seconds, giv-
ing four combinations. Both videos are characterized by 3 leaky
buckets. We assume that both video connections have the QoS
requirement that the fraction of traffic that is delayed by more
than the imposed delay limit islessthan 10~7. For the Knightly
et al. plot we use Earliest Deadline First (EDF) scheduling. We
see that for all four cases, the admission region for our approach
isdramatically larger.

In Figure 5 we compare the actual loss probability, Pinf ()
given by (7) with our bound for loss probability, Pi.ss(j), given
by (8). We obtain Pi(j) and P, (j) by simulation, and as-
sume worst—case on-off traffic. We also verify the accuracy of
the large deviation approximation for Pj.ss(7). In Figure 5 we
plot the loss probabilities as a function of the number of connec-
tions being multiplexed over a 45 Mbps link. We consider the
scenariowherethevideoshaveadelay bound of 1 secondand are
characterized by 3 leaky buckets. We observe that the bound on
the loss probability Piess(j) (solid line) tightly boundsthe actual
loss probability P/i(;) (dotted line). We also observe that the
LD approximation (dashed line) closely approximatesthe smu-
lation results.

V. COMPARISON WITH BUFFERED STATISTICAL
MULTIPLEXING

Thenumerical results of the previoussection show that our ap-
proach allows for dramatically more connections than buffered
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Fig. 5. The simulation verifies that the bound on the loss probability Pjgss(7)

tightly bounds the actual loss probability AiNfO(;). The plots further con-

firm the accuracy of the Large Deviation (LD%SSapproxi mation. We use ade-
lay bound of 1 second and characterize the videos by 3 leaky buckets. The
link rate is 45 Mbps. The plots give the loss probability as a function of the
number of ongoing connections.

deterministic multiplexing. In this section we briefly consider
buffered multiplexing with an allowance of small loss probabili-
ties, which we refer to as buffered statistical multiplexing. Con-
sider the buffered analogy of the single-link bufferless system
studied in Section 3. Thelink has capacity C' and is preceded by
afinite buffer of capacity B. Let the same J connections arrive
to this system; specifically the J connections are independent
and the jth connection isregulated by a given regulator function
£,(t). Thetrafficfromthe J connectionspassesdirectly into the
buffered multiplexer, i.e., the traffic is not pre—smoothed before
arriving at the buffer. Thisbuffered system isillustrated in Fig-
ure 6. Assuming that trafficis served FIFO, the maximum delay
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Fig. 6. The traffic of connection j is characterized by the regulator function
£, (t) and fed directly, i.e. unsmoothed, into a buffered multiplexer.

inthissystem isd = B/C. Suppose that the buffer overflow
probability is constrained to be no greater than e.

It is a difficult and challenging problem to accurately char-
acterize the admission region for a buffered multiplexer which
multiplexesregulated traffic and which allowsfor statistical mul-
tiplexing. Elwalid et al. in [9] made significant progressin this
direction. They consider the buffered multiplexer for the spe-
cial case of regulators with two leaky buckets, i.e., for £ ,(t) =
min{p}t, o; + p;t}. (Inour numerical comparisons, we ex-
tend their theory to the case of multiple cascaded leaky buck-
ets.) In order to make the buffered multiplexer mathematically
tractablethey assign each connectionitsown virtual buffer/trunk
system. Each virtual buffer/trunk system is allocated buffer bg ;
and bandwidth e ;. The allocations are based on the buffer and
bandwidth resources (B and C, respectively) and on the regu-
lator parameters (p;, p}, and ¢ ;) for the input traffic. It turns
out that the bandwidth e ; is exactly the ¢ obtained by setting
d; =d = B/C in(4). After someanalysis Elwalid et al. obtain
the following bound on the fraction of time during which loss
occurs at the buffered multiplexer:

PEMW = P(U +--- 4+ U; < C).
whereUy, . .., U; areexactly the samerandomindependent ran-
dom variablesthat occur in Theorem 1. (To calcul ate the associ-
atedcj,...,c%, setd; = d = B/C for each connection j.)

This observation indicates that the bufferless system of this
paper has remarkably similarities with the buffered system in
[9]. Specificaly, for a fixed maximum delay d in the buffered
system, we can design a bufferless system with pre-smoothers
which has the same maximum delay and which hasan admission
region based on the same set of independent random variables
Uf,...,Uj;. The pre-smoothers essentially implement the vir-
tual buffer/trunk systemsintroduced by Elwalid et al. For amax-
imum loss probability of e the admission region for the buffered
multiplexer is defined by

PU+---+U;<C)<e
whereas the admission region for the bufferless systemis

E[(Xi_, Ui = O)tUs]
C-E[U]

<e

Although these admission regionsaredifferent, they are based
on exactly the same independent random variables Uy, ..., U.
The differencein these admission regionsis an artifact of using
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Fig. 7. Number of lambs connections as a function of the delay bound. The
lambs video is described by 3 leaky buckets. Plots shown are for Elwalid et
al. (EMW) and our approach(RRR). The difference in the number of admis-
sible connections is due to the different notions of loss probability.

two different notions of loss probability: whilein this paper we
use “fraction of traffic lost”, the paper [9] uses “the fraction of
time during which loss occurs’. If the same notions of loss were
used, then the admission regions would be identical. Figure 7
givesthe number of lambsconnectionsthat are admitted with the
approach of Elwalid et al. (EMW) [9] and our approach (RRR)
when 3 leaky buckets are used to characterize the trace. We as-
sume a 45 Mbpslink and set ¢; = 10~7 for all connections.

Thus, our bufferless system has essentiadly the same admis-
sion region as the buffered system in [9] for a fixed worst—case
delay d and loss probability e. While being no more difficult
to perform call admission, we believe that the bufferless system
has some important advantages over the buffered system: ()
no buffer is needed at the multiplexer (for packetized traffic, a
relatively small buffer would be needed); (i7) the bufferless ap-
proach allows for a per—connection QoS requirement, whereas
the buffered system imposes the same QoS requirement on all
connections; and (i7¢), perhaps most importantly, networks are
quitetractablefor bufferlesslinks, aswe can reasonably approx-
imate a connection’straffic at the output of the multiplexer asbe-
ing identical to itstraffic at the input to the multiplexer.

On the other hand, the buffered system does have some ad-
vantages over the bufferless system. First, although both sys-
tems have the same worst—case delay, the buffered system will
have alower average delay. Second, the admission region of [9]
can beincreased using the techniquesin [10] and [11] (at the ex-
pense of a much more complicated admission procedure). Be-
cause multimediaapplicationsare typically designed for adelay
bound, and becausethe af orementionedincreasein admissionre-
gionistypically small, we feel that the advantages of the buffer-
less approach outwei gh the advantages of the buffered approach.

VI. FINAL REMARKS

In this paper we have considered traffic management for mul-
timedianetworking applicationswhich permit asmall amount of
loss and some bounded delay. We have argued that it is prefer-
able to smooth the traffic at the ingress and to perform buffer-
less statistical multiplexing within the node than to use shared—



buffer multiplexing. For our scheme we have determined the
worst—case traffic and have outlined an admission control pro-
cedure based on the worst—case traffic. We have also explicitly
characterized the optimal smoother.

As pointed out in Section 111-C the smoothing can be per-
formed by either the network (at the network edge) or by the ap-
plications themselves. If the applications perform the smooth-
ing, then an application should smooth the traffic as much as per-
mitted by the delay constraint, and the network should offer a
service to the application which guarantees queueing—free de-
lays (delays only due to propagation and nodal processing) and
allows the application to specify a maximum tolerable loss rate.
The network node should perform statistical multiplexing in or-
der to maximize its connection—carrying capacity. To guarantee
QoS, admission control should suppose that the traffic is adver-
saria to the extent permitted by the regulators and smoothers.

Throughout this paper we have studied a single-node net-
work. A subsequent paper addresses how the scheme can be ex-
tended to more general networks[14].
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APPENDIX

The purpose of this appendix is to provide a proof for Theorem
2. But first we need to establish two lemmas.

Lemma 2: A necessary conditionfor (S1(t),...,S,(t))tobe
feasbleisrj > ¢ foral j =1,...,J.
Proof: From [27], [28], [7] the maximum delay at
smoother j is

~ gj(t) - S?

d; = r?gg({lgnklg)]&j T —t}. (20)
Supposer} < ¢; forsomej = 1,...,J. Because s > 0 and
rk < r} foral k, it followsfrom (20) that

5 £;(t)
d; > mzag({ . —t}. (21

And because, by assumption, 7} < ¢, it followsfrom (21) that

&5(1)

7. SI\Y) v — g,
d] > I?Zaéi{ C: t} - d]a
where the last equality follows from (4). |

Lemma 3: There exists a stochastic vector arrival processin
A that producesthe steady-state rate variables Uy, . . ., U ; with
U ; having distribution

. min(rj, pj)  with probability m

UVi=9 o with probability 1 — — 24

min(r]l. ,p]l. )

at the smoother outputs.

Proof. Foreachj =1,...,J,lett; = o3/(p} — p?) and
0; = s3/(rj —r3). Att = t; theslope of £;(t) changes form
p; to p3 < pi. Consequently, £;(t;) = pjt; isthe maximum

size burst that can be transmitted at rate p}, provided successive
maximum size bursts are spaced at least £;(t;)/p; — t; apart.
Similarly, at t = ¢, the Slope of S;(t) changesform} tor$ <
7. Consequently, S;(d;) = r}4; is the maximum size burst the
smoother can pass at rate r} , provided successive maximum size
bursts are spaced at |east Sj(éj)/rjMf — 4, apart.

Let b;(t) be adeterministic periodic function such that

1
Ty ) Py 0<1t<ton,
b](t) o { 0 tonj S t S T] .

with on-time to,, and period T); given in Table Ill. Also, let
f1,...,0; beindependent random variables with §,; uniformly
distributed over [0, T;] and define the jth stochastic arrival pro-
cessas .
Ay(t) = / By(s + 8,)ds.

0
Thus each component arrival process (4;(t), t > 0) is gener-
ated by a periodic on-off source; the jth process has peak—rate
p} and averagerate p;. The argument in the proof of Theorem 1

showsthat the vector process(A.(t), ¢ > 0) isafeasible process
inA.

It remains to show that by sending each component process
(A;(t), t > 0) into its respective smoother we obtain an on-off
process whose peak—rateis min(r;, p;) and whose average rate

is p;. Specifically, we now show that A;(t) produces O;(t) =
Jo 6;(s +6;)ds at the smoother output where

5,(t) = min(rjl-,p}) 0 <t < Ton
J 0 TonjftSTj7

where the periods and on—times are given in Table I11.

First, consider thecasep} > rj and&;(t;) > S;(9;). Clearly,
tonj < tj Sincetonj B 53(5])/[)} andtj = gj(tj)/p} and byas—
sumption S;(d;) < &;(t;). Thisimpliesthat £;(ton;) = pjton,.
Hence

SJ(TOHJ-) = gj(ton,)~ (22)

Note furthermore that

(23)

ton; < Ton;

since ton, = S;(0;)/pj = r}6;/p; and by assumption r} <
p}. Because of (22) and (23) and 7on, = ¢; the smoother bursts
a rate r} for aduration of 7on, when fed with an input burst at

rate p} for aduration of ¢on; < t;. Also, note that the smoother

output has averagerate £ ;(ton, ) /T = p; < rjwj , Where the last
inequality follows from the stability condition.

Because of page limitations we omit the discussion of the
other three cases identified in Table 1. They are dealt with in
asimilar fashion; see [29] for details. |

Proof of Theorem 2: Using Lemma 3 and mimicking the proof
of Theorem 1 we obtain

B |[(Ti, U = €)* 0]
¢; = C B[] ;




TABLEIII
ON-TIMES AND PERIODS OF Ej(t) AND 6 (t).

DL Py <]
Ej(t;) > 8(65) | £5(t5) <S;(05) | E(t;) > S;(65) | £5(t5) < S;(d5)
T} S;(8)/p; Eitj)/p; S;i(85)/p; Ei(ti)/pj
ton, S;(8;)/p} t S;(8;)/p; t
Ton; 9; E; (tj)//r] S; (‘%’)/ﬂ} tj

whereUy,..., U, aredefined in Lemma3. Using the fact that

U ; isaBernoulli random variable, we obtain from the above ex-
pression

E [(Zk# Uy + min(r}, p}) — C’)“‘]
C
. z;k§;¢jﬁg+c;—cn+L

op

(24)

where the last inequality follows from Lemma 2.
From (15) and (24) it remainsto show that

E(Q_Ui+¢ - <E[O Ui+ —O)'].
k+#j k#3

(25

From Lemma 2 and Proposition 1.5.1in [16]

U <ica Uy fordlk=1,...,J. (26)

The inequality (25) follows from (26), the independence of
U, ..., U; and an argument that parallels the argument in the
proof of Theorem 1. O
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