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Abstract. Structured peer-to-peer (P2P) lookup
services—such as Chord, CAN, Pastry and
Tapestry—organize peers into a flat overlay network
and offer distributed hash table (DHT) functionality.
In these systems, data is associated with keys and
each peer is responsible for a subset of the keys.
We study hierarchical DHTs, in which peers are
organized into groups, and each group has its
autonomous intra-group overlay network and lookup
service. The groups themselves are organized in
a top-level overlay network. To find a peer that
is responsible for a key, the top-level overlay first
determines the group responsible for the key; the
responsible group then uses its intra-group overlay
to determine the specific peer that is responsible for
the key. After providing a general framework for
hierarchical P2P lookup, we consider the specific
case of a two-tier hierarchy that uses Chord for the
top level. Our analysis shows that by designhating

the most reliable peers in the groups as superpeers,

the hierarchical design can significantly reduce the
expected number of hops in Chord. We also propose
a scalable design for managing the groups and the
superpeers.

Introduction

by organizing the peers in a structured overlay network, and
routing a message through the overlay to the responsible peer.
The efficiency of a lookup service is generally measured as a
function of the number of peer hops needed to route a mes-
sage to the responsible peer, as well as the size of the rout-
ing table maintained by each peer. For example, Chord re-
quiresO(log N) peer hops an@(log N) routing table entries
when there aréV peers in the overlay. Implementations of the
distributed lookup service are often referred to as Distributed
Hash Tables (DHTS).

Distributed DHTSs are the central components of a wide
range of new distributed applications, including distributed
persistent file storage [5, 6], Web caching [7], multicast [8, 9],
or computational grids [10]. DHTs generally provide improve-
ment to an application’s resilience to faults and attacks.

Chord, CAN, Pastry and Tapestry are all flat DHT de-
signs without hierarchical routing. Each peer is indistinguish-
able from another in the sense that all peers use the same
rules for determining the routes for lookup messages. This
approach is strikingly different from routing in the Internet,
which uses hierarchical routing. Specifically, in the Internet,
routers are grouped into autonomous systems (ASes). Within
an AS, all routers run the same intra-AS routing protocol (e.g.,
RIP or OSPF). Special gateway routers in the various ASes
run an inter-AS routing protocol (BGP) that determines the
path among the ASes. Hierarchical routing in the Internet of-
fers several benefits over non-hierarchical routing, including
scalability and administrative autonomy (e.g., at the level of a
university, a corporate campus, or even the coverage area of a
base station in a mobile network).

In this paper we explore hierarchical DHTSs. Inspired
by hierarchical routing in the Internet, we examine two-tier
DHTs in which(i) peers are organized in disjoint groups, and
(74) lookup messages are first routed to the destination group
using an inter-group overlay, and then routed to the destination
peer using an intra-group overlay. We will argue that hierarchi-
cal DHTs have a number of advantages, including:

— They significantly reduce the average number of peer hops
in a lookup, particularly when nodes have heterogeneous
availabilities.

Peer-to-peer (P2P) systems are gaining increased popularity. They significantly reduce the lookup latency when the
as they make it possible to harness the computing power and peers in the same group are topologically close and co-
resources of large populations of networked computers in a operative caching is used within the groups.
cos.t-effectlve manner. A central problem of P'2P sys.tem is to _ They facilitate the large-scale deployment of a P2P lookup
assign and locate resources among peers. This task is achieved ggpyice by providing administrative autonomy to partic-
by a P2Rookup service ipating organizations. In particular, in the hierarchical
Several important proposals have been recently put  framework that we present, each participating organiza-
forth for implementing distributed P2P lookup services, in-  ion (e.g., institutions and ISPs) can choose its own lookup

cluding Chord [1], CAN [2], Pastry [3] and Tapestry [4]. In protocol (e.g., Chord, CAN, Pastry, Tapestry).
these lookup services, each key for a data item is assigned to

the live peer whose node identifier is “closest” to the key (ac- We present a general framework for hierarchical
cording to some metric). The lookup service essentially perDHTSs. In the framework, each group maintains its own over-
forms the basic function of determining the peer that is reday network and uses its own intra-group lookup service. A
sponsible for a given key. The lookup service is implementedop-level overlay is also defined among the groups. Within



each group, a subset of peers are labeled as “superpeers”. Swe organized in groups according to locality, the lookup algo-
perpeers, which are analogous to gateway routers in hierarthm applies only to CAN, does not use superpeers, and is not
chical IP networks, are used by the top-level overlay to routea multi-level hierarchical algorithm.

messages among groups. We consider designs for which peers Our approach has been influenced by KaZaA, an enor-
in the same group are locally close. We describe a coopermously successful unstructured P2P file sharing service. (To-
ative caching scheme that can significantly reduce averagday, KaZaA has typically several million participating peers
data transfer delays. Finally, we also provide a scalable alat the same time.) KaZaA designates the more available and
gorithm for assigning peers to groups, identifying superpeergowerful peers asupernodesin KaZaA, when a new peer
and maintaining the overlays. wants to join, it bins itself with the existing supernodes, and

After presenting the general framework, we explore inestablishes an overlay connection with the supernode that has
detail a particular instantiation in which Chord is used for thethe shortest RTT. The supernodes are connected through a top-
top-level overlay. Thus, in this instantiation, Chord is analo-level overlay network, using a proprietary design. A similar ar-
gous to BGP in Internet routing, and the intra-group lookupchitecture has been proposed in CAP [15], a two-tier unstruc-
services are analogous to intra-AS routing protocols. Using &ured P2P network that focuses on scalability and stability. Our
novel analytical model, we analyze the expected number oflesign is a blend of the supernode/hierarchy/heterogeniety of
peer hops that are required for a lookup in the hierarchicaKaZaA with the lookup services in the structured DHTSs.

Chord instantiation. Our model explicitly captures inaccura- Brocade [16] proposes to organize the peers in a two-
cies in the routing tables due to peer failures. level overlay. All peers form aingleoverlayO. Geograph-

The paper is organized as follows: We first discuss redically close peers are then grouped together and get assigned
lated work in Section 2. We then present the general framea representative called “supernode”. Supernodes are typically
work for hierarchical DHT'’s in Section 3. We discuss the par-well connected and situated near network access points. The
ticular case of a two-tier Chord instantiation in Section 4, andsupernodes form another overl@y;, and each of them must
we quantify the improvement of lookup latency due to the hi-somehow announce which peers are reachable through him.

erarchical organization of the peers. Brocade is not truly hierarchical sinedl peers are part b,
which prevents it from reaping the benefits of hierarchically
2 Related Work organized overlays discussed in section 3.1.

Finally, Castro et al. present in [17] a topology-aware
P2P networks can be classified as being either unstructur&(frSion of Pastry [3]. At each hop Pastry presents multiple
or structured. Chord [1], CAN [2], Pastry [3], Tapestry [4], equivalent choices to route a request. By choosing the_ c_Io:_sest
and P-Grid [11], which use highly structured overlays and usésmallest network delay) peer at each hop, the)_/ try Fo minimize
hashing for targeted data placement, are examples of struE-et‘Nork dglay. HoweverZ at egch step the'pOSSIbllltles decrease
tured P2P networks. These P2P networks are all flat desigrigPonentially, so delay is mainly determined by the last hop,
(P-Grid is based on a virtual distributed search tree, but pedfSually the longest. Our approach is somewhat the opposite, as
nodes are located at the leaves level and the tree is used sold¥y ProPose Iqrge hops to first get to a group, gnd then shorter
for routing purposes). Gnutella [12] and KaZaA [13], whose ocal hops inside thg group. Note that our arch|te_cture I_eads to
overlays grow organically and use random data placement, afomore natural caching scheme, as shown later in section 3.4.
examples of unstructured P2P networks.

Ratnasamy et al. [14] explore using landmark node3 Hierarchical Framework

to bin peers into groups. The basic idea is for each peer to
measure its round-trip time (RTT) t&/ landmarks, order the We begin by presenting a general framework for a hierarchical
resulting RTTs, and then assign itself to oneldt groups. DHT. Although we focus on a two-tier hierarchy, the frame-
The authors then apply this binning technique to CAN, to conwork can be extended to a general tier hierarchy in a straight-
struct a locality-aware overlay. In this binning-CAN scheme,forward manner.
the node id space is partitioned indd! equal-size portions, Let P denote the set of peers participating in the sys-
one portion corresponding to each group. When a peer wantem. Each peer has a node id. Each peer also has an IP ad-
to join the overlay, it pings the landmarks to determine thedress, which may change whenever it re-connects to the sys-
group, and hence the portion of the id space, to which it betem. The peers are interconnected through a network of links
longs; the peer then gets assigned a node id, uniformly choseand switching equipment (routers, bridges, etc.) The peers
from that portion of the node id space. This implies that duringsend lookup query messages to each other using a hierarchical
a lookup, typically short topological hops are taken while theoverlay network, as described below.
lookup message travels through a group; and then longer topo- The peers are organized into groups. We will discuss
logical jumps are taken when the message reaches the bourttbw groups are created and managed and how peers are as-
ary of a group. Our hierarchical DHT schemes bear little ressigned to groups in Section 3.3. The groups may or may not
semblance to the scheme in [14]. Although in [14] the peerde such that the peers in the same group are topologically close



to each other, depending on the application needs. Each group
has a unique group id. Ldtbe the number of groups;; the
peers in group, andg; the id for group:.

The groups are organized into tap-level overlay
network defined by a directed graphX,U), where X =
{g1,--. ,91} is the set of all the groups arid is a given set
of virtual edges between the nodes (that is, groupsy.imThe
graph(X, U) is required to be connected, that is, between any
two nodesy andg’ in X there is a directed path fromto ¢’
that uses the edgesin It is important to note that this overlay
network defines directed edges among groups and not among | O
specific peers in the groups.

Each group is required to have one or msuperpeers O
Superpeers, as we will discuss below, have special character-
istics and responsibilities. Lef; C G; be the set of super-
peers in groug. Our architecture allows faof; = G; for all
i =1,...,I, inwhich case all peers are superpeers (and dis-
tincti(;n bétween regular peersesmd superpeperspbecorgnes sup_'(:eilg' 2.Communication relationships between superpeers in neighbor-
fluous). We refer to architectures for which all peers are syl"d groups.
perpeers as theymmetric desigrOur architecture also allows
|S;| = 1foralli =1,...,1,inwhich case each group has ex-
actly one superpeer. Léi; = G; —5; be the setof all "regular ;i this knowledge,s; can send query messagesso On
PEErs” in groupy;. For hon-symmetric designs{# Gi).an  q other hand, i is a regular peer, thep must first send
attempt is made to designate the more powerful peers as SHitra-group query messages to a superpeer in its group, which

perpeers. By “more powerful,” we primarily mean the PEEScan then forward the query message to another group. Regular

that are up and connected the most. But as secondary criteri ers must thus know the name and IP address of the super-
superpeers will be the peers that have high CPU power andlgiers in their group. Figure 1 shows a top-level overlay net-

network connection bandwidth. work. Figure 2 shows possible communication relationships

between the corresponding superpeers. Figure 3 shows an ex-

% O ample for which there is one superpeer in each group and the
top-level overlay network is a ring.

O Within each group there is also an overlay network

O O \ g O O that is used for query communication among the peers in the
group. Each of the groups operates autonomously from the

O other groups. For example, some groups can use Chord, others

O CAN, others Pastry, and yet others Tapestry.

9:

and the current IP address of at least one superpeerS;.

% 3.1 Hierarchical Lookup Service

O o 9s Let us first consider a two-level lookup service, where the top
O O O level manages peer groups and the bottom level peer nodes.

\ O Given a keyk, we say that group; is responsible fok if g, is

O the “closest” group té& among all the groups. Here “closest”

is defined by the specific top-level lookup service (e.g., Chord,
CAN, Pastry, or Tapestry).

The implementation of the lookup service exploits the
Fig. 1. Communication relationships between groups in the overlayhierarchical architecture: first, the lookup service finds the
network. group that is responsible for the key; then it finds the peer
within that group that is responsible for the key. Specifically,
our two-tier DHT operates as follows. Suppose a peer G;

The superpeers are gateways between the groups: th@yants to determine the peer that is responsible for akkey
are used for inter-group query propagation. To this end, we re-

quire that ifs; is a superpeer i7;, and(g;, g;) is an edge in 1. Using the overlay network in group peerp; sends a
the top-level overlay networkX, U ), thens; knows the name guery message to one of the superpeers;in




2. Once the query reaches a superpeer, the top-level lookup messages exchanged for the same number of requests. Fi-
service routes the query througly, U) to the groupG; nally, as we shall see shortly, the hierarchical organization
that is responsible for the kely. During this phase, the of the peer groups is perfectly adapted to content caching,
query only passes through superpeers, hopping from one which can further reduce the number of messages that
group to the next. A superpeer in one group uses its knowl-  need to get out of the group.
edge of the IP addresses of superpeers in the subsequent
group along the route to forward the query message from o Intra-Group Lookup

group to group. Eventually, the query message arrives at ) ) ) ) )
some superpee; € G;. The framework we just described is quite flexible and accom-

3. Using the overlay network in grouj) the the superpeer Modates any one of a number of overlay structures and lookup
s; routes the query to the pegy € G, that is responsible services at any level in the hierarchy. At the intra-group level,

for the keyk. the groups can use different overlays, which could all be dif-
4. Peerp; sends a response back to querying peeDe- ferent from the top-level overlay structure. _
pending on the design, this response message can follow If a group has a small number of peers (say, in the

the reverse path of the path taken by the query messag?,ns): each peer ip the group could track all the other peers
or can be sent directly from pegr to peerp; (ignoring N the group (their ids and IP addresses); the group could then
the overlay networks). use CARP [18] or consistent hashing [19] to assign and locate

keys within the group. The number of steps to perform such
This approach can be generalized to an arbitrary numan intra-group lookup in the destination grougl$l), since
ber of levels. A request is first routed through the top-moskeach peer runs a local hash algorithm to determine the peer in
overlay network to some superpeer at the next level belowthe group responsible for a key(in Figure 3).
which in turn routes the request through its “local” overlay
network, and so on until the request finally reaches some peer

List of peers

node at the bottom-most level. In the rest of this paper, we will in group
focus on the case of a two-level lookup service.

The hierarchical architecture has several important ad-
vantages when compared to the flat overlay networks.

hash i
© -
— Exploiting heterogeneous peeBy designating as super- () e Top-level overlay network

peers the peers that are “up” the most, the top-level over- e
Ch
Group
(n) |g

lay network will be more stable than the corresponding flat Growp | 10° - 10°peers
overlay network (for which there is no hierarchy). This in-

creased stability enables the lookup service to approach its care 3
theoretical optimal lookup hop performance (for example, 9,
on averag% log N for Chord, whereV is the number of <10°peers ()

peers in the Chord overlay).
— TransparencyWhen a key is moved from one peer to an- _ o ) )
other within a group, the search for the peer holding the” :agr Sr'ghe (I::tsrg OfS ”“Igc;gie OYSeT:zylre‘i:‘ggtr:(;""t:, r?szjﬁgéer;gﬁig’;er
: : up. - u upisi usi | u
key is completely transparent to the top-level aIgorﬂhm.EerV?CGSFEC ARP,gChoFr) e A’\ﬁ’). P 9 P
Similarly, if a group changes its intra-group lookup algo-
rithm, the change is completely transparent to the other

groups and to the top-level lookup algorithm. Also, the If the group is a little larger (say, in the hundreds), then
failure of a regular peer; € G; (or the appearance of a the superpeers could track all the peers in the group. In this
new peer) will beocal to G;; routing tables in peers out- case, by forwarding a query to a local superpeer, a peer can do
side ofG; are not effected. alocal lookup inO(1) steps §; in Figure 3).

— Faster lookup timeBecause the number of groups will be Finally, if the group is large (say, thousands of peers or
typically orders of magnitude smaller than the total nUm-yre) then a DHT such as Chord, CAN, Pastry, or Tapestry
ber of peers, queries travel over fewer hops. As we shalkan pe used within the grougs(andg, in Figure 3). In this
soon see, this property along with the enhanced stabilit¢ase, the number of steps in the local lookupidog M),
of the top-level overlay can significantly reduce queryingynere s is the number of peers in the group.
delays.

— Less messages in the wide-arélathe most stable peers
form the top-level DHT, most overlay reconstruction mes-
sages happen inside groups, which gather peers that ahethe two-tier hierarchical DHT, peers are organized in groups
topologically close. Less hops per lookup means also lesand, in turn, groups are divided in regular peers and super-

3.3 Hierarchy and Group Management



peers. We now briefly describe the protocols used to manage Such hierarchical setups can be naturally extended to
groups. implement cooperative caching. Consider the following modi-
Consider peep joining the hierarchical DHT. We as- fication to the lookup algorithm. When a pgee G; wants to
sume thap is able to get the idy of the group it belongs to obtain the file associated with some Keyit first uses group
(e.g.,g may correspond to the name @6 ISP or university ~G;'s intra-lookup algorithm to find the pegf € G, that would
campus). Firsty contacts and asks another pgealready part  be responsible fok if G; were the entire set of peersifhas
of the P2P network to look ugs group using key. Following  a local copy of the file associated wikh it returns the file to
the first step of the hierarchical lookug, locates and returns p; otherwisep’ obtains the file (using the hierarchical DHT),
the IP address of the superpeer(s) of the group responsible féaches a copy, and forwards the fileptdn this manner, files
key g. If the group id of the returned superpeer(s) is preciselyare cached in the groups where they have been previously re-
g, thenp joins the group using the regular join mechanisms ofquested (until they are replaced by a cache replacement al-
the underlying intra-group lookup service; additionafiyjo-  gorithm, such as LRU). If a significant fraction of requests are
tifies the superpeer(s) of its CPU and bandwidth resources. fbr popular files, then a significant fraction of file transfers will
the group id is not;, then a new group is created withgaand ~ be intra-group transfers. Thus, the hierarchical design can be
p as only (super)peer. used to create a P2P content distribution network. As a func-
In a network withm superpeers per group, the firast  tion of file sizes, cache sizes, request distributions and access

peers to join a groug become the superpeers of that group.bandWidth, one can use standard analytical techniques [20] to
However, as pre\/ious|y mentioned, superpeers are expected(ﬁyantify the reduction in average file transfer time and load on
be the most stable and powerful group nodes. Therefore, waccess links.

let superpeers monitor the peers that join a group and present

“good” characteristics. Superpeers keep an ordered list of the o

superpeer candidates: the longer a peer remains connected #hd Chord Instantiation

the higher its resources, the better a superpeer candidate it be-

comes. This list is sent periodically to the regular peers of the=or the remainder of this paper we focus on a specific top-level
group. When a superpeer fails or disconnects, the first requlasHT, namely, Chord. In this context, we show that the two-tier

peer in the list becomes superpeer and joins the top-level ovegtesign can significantly reduce lookup latency and file transfer
lay. It informs all peers in its group of its arrival, as well as the |atency.

superpeers of the neighboring groups.
We are thus able to provide stability to the top-level

overlay using multiple superpeers, promote the most stabld.1 Overview of Chord

peers as superpeers, and rapidly repair the infrequent failures

or departures of superpeers. In Chord, each peer and each key has-#it id. Ids are or-
dered on a circle modul@™. Key k is assigned to the first
peer whose identifier is equal to or followsn the identifier

3.4 Content Caching space. This peer is called the successor ofikey

In many P2P applications, once a pgedetermines the peer .
p’ that is responsible for a key,then askg’ for the file as- swoesor(m2 )
sociated with the key. This file might be a music file (MP3), a
video, a software package, a document, etc. If the path ffom

to p traverses a congested or low-speed link, the file transfer
delay will be long. In this section, we describe how hierarchi-

cal DHTs can be used to create groups of cooperative caches,
which can significantly reduce file transfer delays.

In many hierarchical DHT setups, we expect the peers n
in a same group to be topologically close and to be intercon-
nected by high-speed links. For example, a group might con-
sist of peers in a corporate or university campus, with campus
networks using 100 Mbps Ethernet. In such an environment, it
is typically faster to retrieve files from other peers in the local
group, rather than to retrieve the file from the global Inter-
net. Also, by frequently confining file transfers to intra-group
transfers, we reduce traffic loads on the access links between
the groups and higher-tier ISPs. Fig. 4. Fingers of a peer in a Chord ring.

i-1
successor(n+2 )

fingeri-1

successor( n+2‘ )



Each peer tracks its successor and predecessor peertine new superpeers eagerly update the vectors of the predeces-
the ring. In addition, each peer tracks other peers, called sor and successor groups. This guarantees that each group has
fingers specifically, a peer with igh tracks all the successors an up-to-date view of its neighboring groups and that the ring

of the idsp + 27~ ! for eachj = 1,... ,m (note thatp’s first  is never disconnected.
finger is in fact its successor). The successor, predecessor, and Fingers improve the lookup performance, but are not
fingers make up the Chord routing table (see Figure 4). necessary for successfully routing requests (a request can al-

During a lookup, a peer forwards a query to the fingerways be routed by following the successor pointers until it
with the largest id that precedes the key value. The process igaches its destination. However, this routing lead®(®)
repeated from peer to peer until the peer preceding the key isops to reach the destination). Therefore, when the superpeers
reached, which is the “closest” peer to the key. When there ar§; of a groupg; change, we do notimmediately update the fin-

P peers, the number of hops needed to reach the destinationgers that point t@;. Instead, we lazily update the finger tables
O(log P) [1]. when we detect that they contain invalid references (similarly
to the lazy update of the fingers in regular Chord rings [1]). It
is worth noticing that the regular Chord must perform a lookup
operation to find a lost finger. Due to the redundancy that our
In the top-level overlay network, each “node” is actually amultiple superpeer approach provides, we can choose with-
group of peers. This implies that the top-level lookup systenrPut delay another superpeer in the finger vector for the same
must manage an overlay of groups, each of which is repregroup.
sented by a set of superpeers that may fail independently from To route a request to a group pointed to by a vector
the group they belong to. Chord requires some adaptatiori§uccessor or finger), we choose a random IP address from
for being used in the top-level overlay network and managinghe vector and forward the request to that superpeer. When
groups instead of nodes. We will refer to the modified versiorgroups have more than one superpeer, this load balancing strat-
of Chord as “top-level Chord”. egy avoids overloading specific nodes or communication links,
and increases the scalability of the system.

4.2 Inter-Group Chord Ring

4.3 Lookup Latency with Hierarchical Chord

In this section, we quantify the improvement of lookup latency
due to the hierarchical organization of the peers. To this end,
we compare the lookup performance of two DHTs. The first
DHT is the flat Chord DHT. The second DHT is a two-tier
hierarchy in which Chord is used for the top level overlay,
and arbitrary DHTs are used for the bottom level overlays. For
each bottom level group, we only suppose that the peers in the
group are topologically close so that intra-group lookup delays
are negligible. We shall show that the hierarchical DHT can
significantly reduce the lookup latency, owing to the heteroge-
neous availabilities of the peers and the reduction of nodes in
the Chord ring.

In order to make a fair comparison, we suppose that
both the flat and hierarchical DHTs have the same number of
peers, denoted by. Let I be the number of groups in the
hierarchical design. Because peers are joining and leaving the
Each node in top-level Chord has a predecessor anﬂng’ _the finger entries in the_ peers will not all be accu_rate.

This is more than probable, since fingers are updated lazily. To

successowector (instead of a pointer). The vectors hold the he h ity of th hat th
IP addresses of the superpeers of the predecessor and sucd@pture the etgrogeneny of the peers, we suppose that there
are two categories of peers:

sor group in the ring, respectively. Each finger is also a vec*®

tor, which holds the IP addresses of the superpeers of another_ giapje peersfor which each peer is down with probability
group an the ring. The routing table of a top-level Chord group Ds.

is shown in Figure 5. _ — Instable peersfor which each peer is down with probabil-
The population of groups in the top-level overlay net- ity p,., With p, >> p,.

work is expected to be rather stable. However, individual su-

perpeers may fail and disconnect the top-level Chord ring. We suppose that the vast majority of the peers are insta-

When the identity of the superpeefsof a groupg; changes, ble peers. In real P2P networks, like Gnutella, most peers just

Fig. 5. Group routing table in the top-level Chord overlay network.



remain connected the time of getting data from other peerslenote the probability that théh finger is used. We therefore
This fact has already been observed in [21]. For the hierarchihave
cal organization, we select superpeers from the set of stable i 4
peers, and we suppose there is at least one stable peer in each - ) 2°
group. Because there are many more instable peers than stable hin) =1+ Z q”(l)h<n B [2m/ND
peers, the probability that a randomly chosen Chord node is =0
down in the flat DHT is approximately,. In the hierarchical The probability that théth finger is used is given by
system, because all the superpeers are stable peers, the proba- o
bility that a Chord node is down js,. gn(i) =p""(1=p) i=1,... ,jn

To compare the lookup delay for flat and hierarchical
DHTs, we thus only need to consider a Chord ring wih
peers, with each peer having the same probabilitf being
down. The flat DHT corresponds tav,p) = (P,p.) and in ;
the hierarchical DHT corresponds tV,p) = (I,p,). We  h(n) =1+ p/"h(n— 1)+ (1 — p) ijfzh(n _ [LD
now proceed to analyze the lookup of the Chord ring p). = 2m /N

To simplify the analysis, we assume thepeers are equally ) ) ) , o
spaced on the ring, i.e., the distance between two adjacektsing this recursion, we can calculate all fhie:)'s beginning

peers is%+. Our model implies that when a peer attempts to@t/2(0) = 0. We then use (1) to obtain the expected number of
contact a peer in its finger table, the peer in the finger tabl&0Ps.E[H].
will be down with probabilityp, except if this is the successor
peer, for which we suppose that the finger entry is always cor-
rect (i.e., the successor is up or the peer is able to find the new
successor. This assures the correct routing of lookup queries).
Given an initial peer and a randomly generated key, o 0
let the random variablé/ denote the number of Chord hops
needed to reach the target peer, that is, to reach the peer re
sponsible for the key. Leét’ be the random variable that is the
clockwise distance in number of peers from the initial peer
to the target peer. We want to compute the expectaiifi].
Clearly

and byg,, (0) = p’». Combining the above two equations we
obtain

look-

per

Mean number of hops

E[H] = Z_: P(T = n)E[H|T = n]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n=0 Probability of node failure
=
= D BH|T =n] (1)
n=0 Fig. 6. Mean number of hops per lookup in Chord.

From (1), it suffices to calculat&[H|T = n| to compute

E[H]. Let h(n) = E[H|T = n]. Note thath(0) = 0 and In Figure 6, we plot the expected number of hops in a
h(1) = 1. Let lookup as a function of the availability of the peers in a Chord
system, for different values a¥. We can observe an expo-
2"n nential increase in the number of steps onlyzfar 0.7. With

jn =max{j : 2/ < =} , :

N smaller values op, although peers in the ring are not totally

The valuej,, represents the number of finger entries that pre_rellable, we are still able_to advance quite qwckly on the ring.

S Indeed, while the best finger for a target peer is unavailable

cede the target peer, excluding finger 0, the successor. For €aGith probabilityp, the probability of the second best choice to
of the finger entries, the probability that the correspondin P yp, P Y

S
peer is up i (the successor is assumed always up, so Cho?ge also down '$h’ which is farl sn.wlgllerfthﬁp. h look |
routing is assured to eventually succeed). Despite the good scalability of the Chord lookup al-

Starting at the initial peer, when hopping to the r]extgorithm in a flat configuration, the hierarchical architecture
. yin ) ) ) can yet significantly decrease the lookup delay. Table 1 gives

peer, the query will advanck;77 | peers if thej,th finger e expected number of hops for the flat and hierarchical

peer is up; if this peer is down but tiig, — 1)th finger peer  schemes, for different values @f, I, andp, (ps = 0). We

2Jn—1

is up, the query will advancéml; and so on. Lety,(7) suppose in all cases groups éf peers. As an example, for



Table 1. Comparing the flat and hierarchical networks.

P =220 = 1,048,676 peers, angh, = 0.8, we observe that
abouts9 hops are needed on average. However, if we organize
these peers i = 2'6 = 65536 groups of16 peers each, the
number of hops is reduced & Since the number of steps is
directly related to the lookup delay, we can conclude that the

average lookup delay is divided by a factor7ah this case. 5.

5 Conclusion

Hierarchical organizations in general improve overall system
scalability. An example of a hierarchical organization is the In- -
ternet routing architecture with intra-domain routing protocols
such as RIP or OSPF, and with BGP as inter-domain routing

protocol. In this paper, we have proposed a generic frame-g,

work for the hierarchical organization of peer-to-peer over-
lay network, and we have demonstrated the various advan-

tages it offers over a flat organization. A hierarchical design 9.

offers higher stability by using more “reliable” peers (super-
peers) at the top levels. It can use various inter- and intra-grou
lookup algorithms simultaneously, and treats join/leave event:
and key migration as local events that affect a single group.
By gathering peers into groups based on topological proxim-
ity, a hierarchical organization also generates less messages.|
the wide area and can significantly improve the lookup perfor-
mance. Finally, as shown in Section 3, our architecture is ide-
ally suited for caching popular content in local groups. By first

querying the responsible peer within ones own group, populaf2,
objects are dynamically pulled into the various groups. Thisi3.
local-group caching can dramatically reduce download delays4.

in peer-to-peer file-sharing systems.
We have presented an instantiation of our hierarchi-

cal peer organization using Chord at the top level. The Chord>s.

lookup algorithm required only minor adaptations to deal with
groups instead of individual peers. We have analyzed and
guantified the improvement in lookup performance of hier-

archical Chord. When all peers are available, an hierarchicée‘

organization reduces the length of the lookup path by a factor
of 222 ‘whereT is the number of groups an#l is the total
number of peers. When each peer is down with a certain prob-
ability, a hierarchical organization reduces the length of the

lookup path dramatically for the case where the failure prob-

ability of superpeers is smaller than the failure probability of1s.

regular peers.
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