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Abstract. Structured peer-to-peer (P2P) lookup
services—such as Chord, CAN, Pastry and
Tapestry—organize peers into a flat overlay network
and offer distributed hash table (DHT) functionality.
In these systems, data is associated with keys and
each peer is responsible for a subset of the keys.
We study hierarchical DHTs, in which peers are
organized into groups, and each group has its
autonomous intra-group overlay network and lookup
service. The groups themselves are organized in
a top-level overlay network. To find a peer that
is responsible for a key, the top-level overlay first
determines the group responsible for the key; the
responsible group then uses its intra-group overlay
to determine the specific peer that is responsible for
the key. After providing a general framework for
hierarchical P2P lookup, we consider the specific
case of a two-tier hierarchy that uses Chord for the
top level. Our analysis shows that by designating
the most reliable peers in the groups as superpeers,
the hierarchical design can significantly reduce the
expected number of hops in Chord. We also propose
a scalable design for managing the groups and the
superpeers.

1 Introduction

Peer-to-peer (P2P) systems are gaining increased popularity,
as they make it possible to harness the computing power and
resources of large populations of networked computers in a
cost-effective manner. A central problem of P2P system is to
assign and locate resources among peers. This task is achieved
by a P2Plookup service.

Several important proposals have been recently put
forth for implementing distributed P2P lookup services, in-
cluding Chord [1], CAN [2], Pastry [3] and Tapestry [4]. In
these lookup services, each key for a data item is assigned to
the live peer whose node identifier is “closest” to the key (ac-
cording to some metric). The lookup service essentially per-
forms the basic function of determining the peer that is re-
sponsible for a given key. The lookup service is implemented

by organizing the peers in a structured overlay network, and
routing a message through the overlay to the responsible peer.
The efficiency of a lookup service is generally measured as a
function of the number of peer hops needed to route a mes-
sage to the responsible peer, as well as the size of the rout-
ing table maintained by each peer. For example, Chord re-
quiresO(logN) peer hops andO(logN) routing table entries
when there areN peers in the overlay. Implementations of the
distributed lookup service are often referred to as Distributed
Hash Tables (DHTs).

Distributed DHTs are the central components of a wide
range of new distributed applications, including distributed
persistent file storage [5, 6], Web caching [7], multicast [8, 9],
or computational grids [10]. DHTs generally provide improve-
ment to an application’s resilience to faults and attacks.

Chord, CAN, Pastry and Tapestry are all flat DHT de-
signs without hierarchical routing. Each peer is indistinguish-
able from another in the sense that all peers use the same
rules for determining the routes for lookup messages. This
approach is strikingly different from routing in the Internet,
which uses hierarchical routing. Specifically, in the Internet,
routers are grouped into autonomous systems (ASes). Within
an AS, all routers run the same intra-AS routing protocol (e.g.,
RIP or OSPF). Special gateway routers in the various ASes
run an inter-AS routing protocol (BGP) that determines the
path among the ASes. Hierarchical routing in the Internet of-
fers several benefits over non-hierarchical routing, including
scalability and administrative autonomy (e.g., at the level of a
university, a corporate campus, or even the coverage area of a
base station in a mobile network).

In this paper we explore hierarchical DHTs. Inspired
by hierarchical routing in the Internet, we examine two-tier
DHTs in which(i) peers are organized in disjoint groups, and
(ii) lookup messages are first routed to the destination group
using an inter-group overlay, and then routed to the destination
peer using an intra-group overlay. We will argue that hierarchi-
cal DHTs have a number of advantages, including:

– They significantly reduce the average number of peer hops
in a lookup, particularly when nodes have heterogeneous
availabilities.

– They significantly reduce the lookup latency when the
peers in the same group are topologically close and co-
operative caching is used within the groups.

– They facilitate the large-scale deployment of a P2P lookup
service by providing administrative autonomy to partic-
ipating organizations. In particular, in the hierarchical
framework that we present, each participating organiza-
tion (e.g., institutions and ISPs) can choose its own lookup
protocol (e.g., Chord, CAN, Pastry, Tapestry).

We present a general framework for hierarchical
DHTs. In the framework, each group maintains its own over-
lay network and uses its own intra-group lookup service. A
top-level overlay is also defined among the groups. Within



each group, a subset of peers are labeled as “superpeers”. Su-
perpeers, which are analogous to gateway routers in hierar-
chical IP networks, are used by the top-level overlay to route
messages among groups. We consider designs for which peers
in the same group are locally close. We describe a cooper-
ative caching scheme that can significantly reduce average
data transfer delays. Finally, we also provide a scalable al-
gorithm for assigning peers to groups, identifying superpeers,
and maintaining the overlays.

After presenting the general framework, we explore in
detail a particular instantiation in which Chord is used for the
top-level overlay. Thus, in this instantiation, Chord is analo-
gous to BGP in Internet routing, and the intra-group lookup
services are analogous to intra-AS routing protocols. Using a
novel analytical model, we analyze the expected number of
peer hops that are required for a lookup in the hierarchical
Chord instantiation. Our model explicitly captures inaccura-
cies in the routing tables due to peer failures.

The paper is organized as follows: We first discuss re-
lated work in Section 2. We then present the general frame-
work for hierarchical DHT’s in Section 3. We discuss the par-
ticular case of a two-tier Chord instantiation in Section 4, and
we quantify the improvement of lookup latency due to the hi-
erarchical organization of the peers.

2 Related Work

P2P networks can be classified as being either unstructured
or structured. Chord [1], CAN [2], Pastry [3], Tapestry [4],
and P-Grid [11], which use highly structured overlays and use
hashing for targeted data placement, are examples of struc-
tured P2P networks. These P2P networks are all flat designs
(P-Grid is based on a virtual distributed search tree, but peer
nodes are located at the leaves level and the tree is used solely
for routing purposes). Gnutella [12] and KaZaA [13], whose
overlays grow organically and use random data placement, are
examples of unstructured P2P networks.

Ratnasamy et al. [14] explore using landmark nodes
to bin peers into groups. The basic idea is for each peer to
measure its round-trip time (RTT) toM landmarks, order the
resulting RTTs, and then assign itself to one ofM ! groups.
The authors then apply this binning technique to CAN, to con-
struct a locality-aware overlay. In this binning-CAN scheme,
the node id space is partitioned intoM ! equal-size portions,
one portion corresponding to each group. When a peer wants
to join the overlay, it pings the landmarks to determine the
group, and hence the portion of the id space, to which it be-
longs; the peer then gets assigned a node id, uniformly chosen
from that portion of the node id space. This implies that during
a lookup, typically short topological hops are taken while the
lookup message travels through a group; and then longer topo-
logical jumps are taken when the message reaches the bound-
ary of a group. Our hierarchical DHT schemes bear little re-
semblance to the scheme in [14]. Although in [14] the peers

are organized in groups according to locality, the lookup algo-
rithm applies only to CAN, does not use superpeers, and is not
a multi-level hierarchical algorithm.

Our approach has been influenced by KaZaA, an enor-
mously successful unstructured P2P file sharing service. (To-
day, KaZaA has typically several million participating peers
at the same time.) KaZaA designates the more available and
powerful peers assupernodes. In KaZaA, when a new peer
wants to join, it bins itself with the existing supernodes, and
establishes an overlay connection with the supernode that has
the shortest RTT. The supernodes are connected through a top-
level overlay network, using a proprietary design. A similar ar-
chitecture has been proposed in CAP [15], a two-tier unstruc-
tured P2P network that focuses on scalability and stability. Our
design is a blend of the supernode/hierarchy/heterogeniety of
KaZaA with the lookup services in the structured DHTs.

Brocade [16] proposes to organize the peers in a two-
level overlay. All peers form asingleoverlayOL. Geograph-
ically close peers are then grouped together and get assigned
a representative called “supernode”. Supernodes are typically
well connected and situated near network access points. The
supernodes form another overlayOH , and each of them must
somehow announce which peers are reachable through him.
Brocade is not truly hierarchical sinceall peers are part ofOL,
which prevents it from reaping the benefits of hierarchically
organized overlays discussed in section 3.1.

Finally, Castro et al. present in [17] a topology-aware
version of Pastry [3]. At each hop Pastry presents multiple
equivalent choices to route a request. By choosing the closest
(smallest network delay) peer at each hop, they try to minimize
network delay. However, at each step the possibilities decrease
exponentially, so delay is mainly determined by the last hop,
usually the longest. Our approach is somewhat the opposite, as
we propose large hops to first get to a group, and then shorter
local hops inside the group. Note that our architecture leads to
a more natural caching scheme, as shown later in section 3.4.

3 Hierarchical Framework

We begin by presenting a general framework for a hierarchical
DHT. Although we focus on a two-tier hierarchy, the frame-
work can be extended to a general tier hierarchy in a straight-
forward manner.

Let P denote the set of peers participating in the sys-
tem. Each peer has a node id. Each peer also has an IP ad-
dress, which may change whenever it re-connects to the sys-
tem. The peers are interconnected through a network of links
and switching equipment (routers, bridges, etc.) The peers
send lookup query messages to each other using a hierarchical
overlay network, as described below.

The peers are organized into groups. We will discuss
how groups are created and managed and how peers are as-
signed to groups in Section 3.3. The groups may or may not
be such that the peers in the same group are topologically close



to each other, depending on the application needs. Each group
has a unique group id. LetI be the number of groups,Gi the
peers in groupi, andgi the id for groupi.

The groups are organized into atop-level overlay
network defined by a directed graph(X,U), whereX =
{g1, . . . , gI} is the set of all the groups andU is a given set
of virtual edges between the nodes (that is, groups) inX. The
graph(X,U) is required to be connected, that is, between any
two nodesg andg′ in X there is a directed path fromg to g′

that uses the edges inU . It is important to note that this overlay
network defines directed edges among groups and not among
specific peers in the groups.

Each group is required to have one or moresuperpeers.
Superpeers, as we will discuss below, have special character-
istics and responsibilities. LetSi ⊆ Gi be the set of super-
peers in groupi. Our architecture allows forSi = Gi for all
i = 1, . . . , I, in which case all peers are superpeers (and dis-
tinction between regular peers and superpeers becomes super-
fluous). We refer to architectures for which all peers are su-
perpeers as thesymmetric design. Our architecture also allows
|Si| = 1 for all i = 1, . . . , I, in which case each group has ex-
actly one superpeer. LetRi = Gi−Si be the set of all “regular
peers” in groupgi. For non-symmetric designs (Si 6= Gi), an
attempt is made to designate the more powerful peers as su-
perpeers. By “more powerful,” we primarily mean the peers
that are up and connected the most. But as secondary criteria,
superpeers will be the peers that have high CPU power and/or
network connection bandwidth.

g 2

1

g 3

g 4

g

Fig. 1. Communication relationships between groups in the overlay
network.

The superpeers are gateways between the groups: they
are used for inter-group query propagation. To this end, we re-
quire that ifsi is a superpeer inGi, and(gi, gj) is an edge in
the top-level overlay network(X,U), thensi knows the name
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Fig. 2.Communication relationships between superpeers in neighbor-
ing groups.

and the current IP address of at least one superpeersj ∈ Sj .
With this knowledge,si can send query messages tosj . On
the other hand, ifp is a regular peer, thenp must first send
intra-group query messages to a superpeer in its group, which
can then forward the query message to another group. Regular
peers must thus know the name and IP address of the super-
peers in their group. Figure 1 shows a top-level overlay net-
work. Figure 2 shows possible communication relationships
between the corresponding superpeers. Figure 3 shows an ex-
ample for which there is one superpeer in each group and the
top-level overlay network is a ring.

Within each group there is also an overlay network
that is used for query communication among the peers in the
group. Each of the groups operates autonomously from the
other groups. For example, some groups can use Chord, others
CAN, others Pastry, and yet others Tapestry.

3.1 Hierarchical Lookup Service

Let us first consider a two-level lookup service, where the top
level manages peer groups and the bottom level peer nodes.
Given a keyk, we say that groupgj is responsible fork if gj is
the “closest” group tok among all the groups. Here “closest”
is defined by the specific top-level lookup service (e.g., Chord,
CAN, Pastry, or Tapestry).

The implementation of the lookup service exploits the
hierarchical architecture: first, the lookup service finds the
group that is responsible for the key; then it finds the peer
within that group that is responsible for the key. Specifically,
our two-tier DHT operates as follows. Suppose a peerpi ∈ Gi
wants to determine the peer that is responsible for a keyk.

1. Using the overlay network in groupi, peerpi sends a
query message to one of the superpeers inSi.



2. Once the query reaches a superpeer, the top-level lookup
service routes the query through(X,U) to the groupGj
that is responsible for the keyk. During this phase, the
query only passes through superpeers, hopping from one
group to the next. A superpeer in one group uses its knowl-
edge of the IP addresses of superpeers in the subsequent
group along the route to forward the query message from
group to group. Eventually, the query message arrives at
some superpeersj ∈ Gj .

3. Using the overlay network in groupj, the the superpeer
sj routes the query to the peerpj ∈ Gj that is responsible
for the keyk.

4. Peerpj sends a response back to querying peerpi. De-
pending on the design, this response message can follow
the reverse path of the path taken by the query message,
or can be sent directly from peerpj to peerpi (ignoring
the overlay networks).

This approach can be generalized to an arbitrary num-
ber of levels. A request is first routed through the top-most
overlay network to some superpeer at the next level below,
which in turn routes the request through its “local” overlay
network, and so on until the request finally reaches some peer
node at the bottom-most level. In the rest of this paper, we will
focus on the case of a two-level lookup service.

The hierarchical architecture has several important ad-
vantages when compared to the flat overlay networks.

– Exploiting heterogeneous peers:By designating as super-
peers the peers that are “up” the most, the top-level over-
lay network will be more stable than the corresponding flat
overlay network (for which there is no hierarchy). This in-
creased stability enables the lookup service to approach its
theoretical optimal lookup hop performance (for example,
on average12 logN for Chord, whereN is the number of
peers in the Chord overlay).

– Transparency:When a key is moved from one peer to an-
other within a group, the search for the peer holding the
key is completely transparent to the top-level algorithm.
Similarly, if a group changes its intra-group lookup algo-
rithm, the change is completely transparent to the other
groups and to the top-level lookup algorithm. Also, the
failure of a regular peerri ∈ Gi (or the appearance of a
new peer) will belocal toGi; routing tables in peers out-
side ofGi are not effected.

– Faster lookup time:Because the number of groups will be
typically orders of magnitude smaller than the total num-
ber of peers, queries travel over fewer hops. As we shall
soon see, this property along with the enhanced stability
of the top-level overlay can significantly reduce querying
delays.

– Less messages in the wide-area:If the most stable peers
form the top-level DHT, most overlay reconstruction mes-
sages happen inside groups, which gather peers that are
topologically close. Less hops per lookup means also less

messages exchanged for the same number of requests. Fi-
nally, as we shall see shortly, the hierarchical organization
of the peer groups is perfectly adapted to content caching,
which can further reduce the number of messages that
need to get out of the group.

3.2 Intra-Group Lookup

The framework we just described is quite flexible and accom-
modates any one of a number of overlay structures and lookup
services at any level in the hierarchy. At the intra-group level,
the groups can use different overlays, which could all be dif-
ferent from the top-level overlay structure.

If a group has a small number of peers (say, in the
tens), each peer in the group could track all the other peers
in the group (their ids and IP addresses); the group could then
use CARP [18] or consistent hashing [19] to assign and locate
keys within the group. The number of steps to perform such
an intra-group lookup in the destination group isO(1), since
each peer runs a local hash algorithm to determine the peer in
the group responsible for a key (g2 in Figure 3).
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Fig. 3.The case of a ring-like overlay network with a single superpeer
per group. Intra-group lookup is implemented using different lookup
services (CARP, Chord, CAN).

If the group is a little larger (say, in the hundreds), then
the superpeers could track all the peers in the group. In this
case, by forwarding a query to a local superpeer, a peer can do
a local lookup inO(1) steps (g1 in Figure 3).

Finally, if the group is large (say, thousands of peers or
more) then a DHT such as Chord, CAN, Pastry, or Tapestry
can be used within the group (g3 andg4 in Figure 3). In this
case, the number of steps in the local lookup isO(logM),
whereM is the number of peers in the group.

3.3 Hierarchy and Group Management

In the two-tier hierarchical DHT, peers are organized in groups
and, in turn, groups are divided in regular peers and super-



peers. We now briefly describe the protocols used to manage
groups.

Consider peerp joining the hierarchical DHT. We as-
sume thatp is able to get the idg of the group it belongs to
(e.g.,g may correspond to the name ofp’s ISP or university
campus). First,p contacts and asks another peerp′ already part
of the P2P network to look upp’s group using keyg. Following
the first step of the hierarchical lookup,p′ locates and returns
the IP address of the superpeer(s) of the group responsible for
key g. If the group id of the returned superpeer(s) is precisely
g, thenp joins the group using the regular join mechanisms of
the underlying intra-group lookup service; additionally,p no-
tifies the superpeer(s) of its CPU and bandwidth resources. If
the group id is notg, then a new group is created with idg and
p as only (super)peer.

In a network withm superpeers per group, the firstm
peers to join a groupg become the superpeers of that group.
However, as previously mentioned, superpeers are expected to
be the most stable and powerful group nodes. Therefore, we
let superpeers monitor the peers that join a group and present
“good” characteristics. Superpeers keep an ordered list of the
superpeer candidates: the longer a peer remains connected and
the higher its resources, the better a superpeer candidate it be-
comes. This list is sent periodically to the regular peers of the
group. When a superpeer fails or disconnects, the first regular
peer in the list becomes superpeer and joins the top-level over-
lay. It informs all peers in its group of its arrival, as well as the
superpeers of the neighboring groups.

We are thus able to provide stability to the top-level
overlay using multiple superpeers, promote the most stable
peers as superpeers, and rapidly repair the infrequent failures
or departures of superpeers.

3.4 Content Caching

In many P2P applications, once a peerp determines the peer
p′ that is responsible for a key,p then asksp′ for the file as-
sociated with the key. This file might be a music file (MP3), a
video, a software package, a document, etc. If the path fromp′

to p traverses a congested or low-speed link, the file transfer
delay will be long. In this section, we describe how hierarchi-
cal DHTs can be used to create groups of cooperative caches,
which can significantly reduce file transfer delays.

In many hierarchical DHT setups, we expect the peers
in a same group to be topologically close and to be intercon-
nected by high-speed links. For example, a group might con-
sist of peers in a corporate or university campus, with campus
networks using 100 Mbps Ethernet. In such an environment, it
is typically faster to retrieve files from other peers in the local
group, rather than to retrieve the file from the global Inter-
net. Also, by frequently confining file transfers to intra-group
transfers, we reduce traffic loads on the access links between
the groups and higher-tier ISPs.

Such hierarchical setups can be naturally extended to
implement cooperative caching. Consider the following modi-
fication to the lookup algorithm. When a peerp ∈ Gi wants to
obtain the file associated with some keyk, it first uses group
Gi’s intra-lookup algorithm to find the peerp′ ∈ Gi that would
be responsible fork if Gi were the entire set of peers. Ifp′ has
a local copy of the file associated withk, it returns the file to
p; otherwise,p′ obtains the file (using the hierarchical DHT),
caches a copy, and forwards the file top. In this manner, files
are cached in the groups where they have been previously re-
quested (until they are replaced by a cache replacement al-
gorithm, such as LRU). If a significant fraction of requests are
for popular files, then a significant fraction of file transfers will
be intra-group transfers. Thus, the hierarchical design can be
used to create a P2P content distribution network. As a func-
tion of file sizes, cache sizes, request distributions and access
bandwidth, one can use standard analytical techniques [20] to
quantify the reduction in average file transfer time and load on
access links.

4 Chord Instantiation

For the remainder of this paper we focus on a specific top-level
DHT, namely, Chord. In this context, we show that the two-tier
design can significantly reduce lookup latency and file transfer
latency.

4.1 Overview of Chord

In Chord, each peer and each key has am-bit id. Ids are or-
dered on a circle modulo2m. Key k is assigned to the first
peer whose identifier is equal to or followsk in the identifier
space. This peer is called the successor of keyk.

i

n

finger i+1

finger i

finger i-1

successor(

successor(

successor(n+2 )

n+2
i-1

)

n+2
i-2

)

Fig. 4.Fingers of a peer in a Chord ring.



Each peer tracks its successor and predecessor peer in
the ring. In addition, each peer tracksm other peers, called
fingers; specifically, a peer with idp tracks all the successors
of the idsp + 2j−1 for eachj = 1, . . . ,m (note thatp’s first
finger is in fact its successor). The successor, predecessor, and
fingers make up the Chord routing table (see Figure 4).

During a lookup, a peer forwards a query to the finger
with the largest id that precedes the key value. The process is
repeated from peer to peer until the peer preceding the key is
reached, which is the “closest” peer to the key. When there are
P peers, the number of hops needed to reach the destination is
O(logP ) [1].

4.2 Inter-Group Chord Ring

In the top-level overlay network, each “node” is actually a
group of peers. This implies that the top-level lookup system
must manage an overlay of groups, each of which is repre-
sented by a set of superpeers that may fail independently from
the group they belong to. Chord requires some adaptations
for being used in the top-level overlay network and managing
groups instead of nodes. We will refer to the modified version
of Chord as “top-level Chord”.
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Fig. 5.Group routing table in the top-level Chord overlay network.

Each node in top-level Chord has a predecessor and
successorvector (instead of a pointer). The vectors hold the
IP addresses of the superpeers of the predecessor and succes-
sor group in the ring, respectively. Each finger is also a vec-
tor, which holds the IP addresses of the superpeers of another
group an the ring. The routing table of a top-level Chord group
is shown in Figure 5.

The population of groups in the top-level overlay net-
work is expected to be rather stable. However, individual su-
perpeers may fail and disconnect the top-level Chord ring.
When the identity of the superpeersSi of a groupgi changes,

the new superpeers eagerly update the vectors of the predeces-
sor and successor groups. This guarantees that each group has
an up-to-date view of its neighboring groups and that the ring
is never disconnected.

Fingers improve the lookup performance, but are not
necessary for successfully routing requests (a request can al-
ways be routed by following the successor pointers until it
reaches its destination. However, this routing leads toO(P )
hops to reach the destination). Therefore, when the superpeers
Si of a groupgi change, we do not immediately update the fin-
gers that point togi. Instead, we lazily update the finger tables
when we detect that they contain invalid references (similarly
to the lazy update of the fingers in regular Chord rings [1]). It
is worth noticing that the regular Chord must perform a lookup
operation to find a lost finger. Due to the redundancy that our
multiple superpeer approach provides, we can choose with-
out delay another superpeer in the finger vector for the same
group.

To route a request to a group pointed to by a vector
(successor or finger), we choose a random IP address from
the vector and forward the request to that superpeer. When
groups have more than one superpeer, this load balancing strat-
egy avoids overloading specific nodes or communication links,
and increases the scalability of the system.

4.3 Lookup Latency with Hierarchical Chord

In this section, we quantify the improvement of lookup latency
due to the hierarchical organization of the peers. To this end,
we compare the lookup performance of two DHTs. The first
DHT is the flat Chord DHT. The second DHT is a two-tier
hierarchy in which Chord is used for the top level overlay,
and arbitrary DHTs are used for the bottom level overlays. For
each bottom level group, we only suppose that the peers in the
group are topologically close so that intra-group lookup delays
are negligible. We shall show that the hierarchical DHT can
significantly reduce the lookup latency, owing to the heteroge-
neous availabilities of the peers and the reduction of nodes in
the Chord ring.

In order to make a fair comparison, we suppose that
both the flat and hierarchical DHTs have the same number of
peers, denoted byP . Let I be the number of groups in the
hierarchical design. Because peers are joining and leaving the
ring, the finger entries in the peers will not all be accurate.
This is more than probable, since fingers are updated lazily. To
capture the heterogeneity of the peers, we suppose that there
are two categories of peers:

– Stable peers, for which each peer is down with probability
ps.

– Instable peers, for which each peer is down with probabil-
ity pr, with pr >> ps.

We suppose that the vast majority of the peers are insta-
ble peers. In real P2P networks, like Gnutella, most peers just



remain connected the time of getting data from other peers.
This fact has already been observed in [21]. For the hierarchi-
cal organization, we select superpeers from the set of stable
peers, and we suppose there is at least one stable peer in each
group. Because there are many more instable peers than stable
peers, the probability that a randomly chosen Chord node is
down in the flat DHT is approximatelypr. In the hierarchical
system, because all the superpeers are stable peers, the proba-
bility that a Chord node is down isps.

To compare the lookup delay for flat and hierarchical
DHTs, we thus only need to consider a Chord ring withN
peers, with each peer having the same probabilityp of being
down. The flat DHT corresponds to(N, p) = (P, pr) and
the hierarchical DHT corresponds to(N, p) = (I, ps). We
now proceed to analyze the lookup of the Chord ring(N, p).
To simplify the analysis, we assume theN peers are equally
spaced on the ring, i.e., the distance between two adjacent
peers is2m

N . Our model implies that when a peer attempts to
contact a peer in its finger table, the peer in the finger table
will be down with probabilityp, except if this is the successor
peer, for which we suppose that the finger entry is always cor-
rect (i.e., the successor is up or the peer is able to find the new
successor. This assures the correct routing of lookup queries).

Given an initial peer and a randomly generated key,
let the random variableH denote the number of Chord hops
needed to reach the target peer, that is, to reach the peer re-
sponsible for the key. LetT be the random variable that is the
clockwise distance in number of peers from the initial peer
to the target peer. We want to compute the expectationE[H].
Clearly

E[H] =
N−1∑
n=0

P (T = n)E[H|T = n]

=
1
N

N−1∑
n=0

E[H|T = n] (1)

From (1), it suffices to calculateE[H|T = n] to compute
E[H]. Let h(n) = E[H|T = n]. Note thath(0) = 0 and
h(1) = 1. Let

jn = max{j : 2j ≤ 2mn
N
}

The valuejn represents the number of finger entries that pre-
cede the target peer, excluding finger 0, the successor. For each
of the finger entries, the probability that the corresponding
peer is up isp (the successor is assumed always up, so Chord
routing is assured to eventually succeed).

Starting at the initial peer, when hopping to the next
peer, the query will advanced 2jn

2m/N e peers if thejnth finger
peer is up; if this peer is down but the(jn − 1)th finger peer
is up, the query will advanced 2jn−1

2m/N e; and so on. Letqn(i)

denote the probability that theith finger is used. We therefore
have

h(n) = 1 +
jn∑
i=0

qn(i)h
(
n−

⌈ 2i

2m/N

⌉)
The probability that theith finger is used is given by

qn(i) = pjn−i(1− p) i = 1, . . . , jn

and byqn(0) = pjn . Combining the above two equations we
obtain

h(n) = 1 + pjnh(n− 1) + (1− p)
jn∑
i=1

pjn−ih
(
n−

⌈ 2i

2m/N

⌉)
Using this recursion, we can calculate all theh(n)’s beginning
ath(0) = 0. We then use (1) to obtain the expected number of
hops,E[H].
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Fig. 6.Mean number of hops per lookup in Chord.

In Figure 6, we plot the expected number of hops in a
lookup as a function of the availability of the peers in a Chord
system, for different values ofN . We can observe an expo-
nential increase in the number of steps only forp > 0.7. With
smaller values ofp, although peers in the ring are not totally
reliable, we are still able to advance quite quickly on the ring.
Indeed, while the best finger for a target peer is unavailable
with probabilityp, the probability of the second best choice to
be also down isp2, which is far smaller thanp.

Despite the good scalability of the Chord lookup al-
gorithm in a flat configuration, the hierarchical architecture
can yet significantly decrease the lookup delay. Table 1 gives
the expected number of hops for the flat and hierarchical
schemes, for different values ofP , I, andpr (ps = 0). We
suppose in all cases groups ofPI peers. As an example, for



Flat Hierarchical
pr = 0.5 pr = 0.8 ps = 0

P = 216 I = 210 17 43 5
P = 220 I = 216 22 59 8
P = 224 I = 220 28 83 10
P = 224 I = 216 28 83 8

Table 1.Comparing the flat and hierarchical networks.

P = 220 = 1, 048, 676 peers, andpr = 0.8, we observe that
about59 hops are needed on average. However, if we organize
these peers inI = 216 = 65536 groups of16 peers each, the
number of hops is reduced to8. Since the number of steps is
directly related to the lookup delay, we can conclude that the
average lookup delay is divided by a factor of7 in this case.

5 Conclusion

Hierarchical organizations in general improve overall system
scalability. An example of a hierarchical organization is the In-
ternet routing architecture with intra-domain routing protocols
such as RIP or OSPF, and with BGP as inter-domain routing
protocol. In this paper, we have proposed a generic frame-
work for the hierarchical organization of peer-to-peer over-
lay network, and we have demonstrated the various advan-
tages it offers over a flat organization. A hierarchical design
offers higher stability by using more “reliable” peers (super-
peers) at the top levels. It can use various inter- and intra-group
lookup algorithms simultaneously, and treats join/leave events
and key migration as local events that affect a single group.
By gathering peers into groups based on topological proxim-
ity, a hierarchical organization also generates less messages in
the wide area and can significantly improve the lookup perfor-
mance. Finally, as shown in Section 3, our architecture is ide-
ally suited for caching popular content in local groups. By first
querying the responsible peer within ones own group, popular
objects are dynamically pulled into the various groups. This
local-group caching can dramatically reduce download delays
in peer-to-peer file-sharing systems.

We have presented an instantiation of our hierarchi-
cal peer organization using Chord at the top level. The Chord
lookup algorithm required only minor adaptations to deal with
groups instead of individual peers. We have analyzed and
quantified the improvement in lookup performance of hier-
archical Chord. When all peers are available, an hierarchical
organization reduces the length of the lookup path by a factor
of logP

log I , whereI is the number of groups andP is the total
number of peers. When each peer is down with a certain prob-
ability, a hierarchical organization reduces the length of the
lookup path dramatically for the case where the failure prob-
ability of superpeers is smaller than the failure probability of
regular peers.
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