A Lightweight Currency Paradigm
for the P2P Resource Market

David A. Turner
Dept. of Computer Science
CSU San Bernadino
San Bernardino, CA
dturner@csusb.edu

Keith W. Ross

Dept. of Computer and Information Science

Polytechnic University
Brooklyn, NY
ross@poly.edu

September 9, 2003

Abstract

A P2P resource market is a market in which peers trade
resources (including storage, bandwidth and CPU cy-
cles) and services with each other. We propose a specific
paradigm for a P2P resource market. This paradigm
has five key components: (i) pairwise trading market,
with peers setting their own prices for offered resources;
(#4) multiple currency economy, in which any peer can
issue its own currency; (ii7) no legal recourse, thereby
limiting the transaction costs in trades; (iv) a simple,
secure application-layer protocol; and (v) entity identifi-
cation based on the entity’s unique public key. We argue
that the paradigm can lead to a flourishing P2P resource
market, allowing applications to tap into the huge pool of
surplus peer resources. We illustrate the paradigm and
its corresponding Lightweight Currency Protocol (LCP)
with several application examples.

1 Introduction

Today many peers (that is, Internet-connected computer
systems) possess surplus bandwidth, storage and CPU
resources; for example, a peer with a broadband DSL
connection typically utilizes only a small fraction of its
transmission, storage and computation capacity. When
aggregated together across all peers worldwide, these
unused resources constitute a huge, untapped resource
pool. This resource pool can potentially be used by

many applications, including peer-driven content distri-
bution, globally distributed archival storage, massively
parallel computation and P2P file sharing. Of course,
applications can only harness the resource pool if peers
make available their surplus resources to them. Unfor-
tunately, peers are typically “rational,” and are thus re-
luctant to volunteer their resources without sufficient in-
centives [30, 1].

Now suppose the existence of an online market place
where entities - such as peers, companies, users and so on
- buy and sell surplus resources. In this market place, a
given peer might purchase storage and bandwidth from a
dozen other peers for the purpose of remotely backing up
its files; a content publisher might purchase storage and
bandwith from thousands of peers to create a peer-driven
content distribution network; a biotechnology company
might purchase CPU cycles from thousands of peers for
distributed computation. If such a flourishing resource
market existed, individual peers would be incited to con-
tribute their resources to the market place, thereby un-
leashing the untapped resource pool.

In this paper we describe a resource market paradigm
that has been expressly designed to incite peers to make
their surplus resources available to P2P applications.
The paradigm embraces a free market economy in which
entities directly trade with each other for resources or
services. At the heart of the paradigm are lightweight
currencies, which are not linked to real-world currencies
and which, in fact, are not legal tender. With lightweight

currencies, assurances are not provided by legal recourse,
but instead by transaction replication, reputation and
trust. We refer to the paradigm described in this paper
as the lightweight currency paradigm.

Because lightweight currencies are not tied to real
money, we conjecture that users would feel comfort-
able delegating trading decisions to local trading agents.
Rather than directly making trading decisions, a user
would only occasionally set high-level trading policies
with its local trading agent. This delegation is impor-
tant since micropayments impose mental decision costs
that users prefer to avoid [23].

One might argue that the P2P resource market could
use bartering in lieu of currency. In a bartering deal, a
peer might trade, for example, a certain number of CPU
cycles for a certain amount of remote storage. On the
the other hand, in a P2P resource market using currency,
a peer might trade CPU cycles for currency, and later
trade, with a different peer, its earned currency for re-
mote storage. As in real-world economies, currency can
dramatically increase trading volumes, thereby enhanc-
ing the exploitation of the untapped peer resource pool.
Furthermore, historical evidence suggests that currency
markets can emerge without precursor barter markets;
one such example is frequent flyer miles, which can be
earned from and spent on airline tickets, hotel stays and
rental cars. Another example is the implicit currency in
the Kazaa P2P file-sharing system (which we discuss in
Section 2).

In this resource market paradigm, any entity that
sells resources/services sets its own prices for the re-
sources/services. Furthermore, the paradigm does not
impose a single currency - in this ultra-free market econ-
omy, any entity can issue its own currency. Instead of
imposing a monolithic currency controled by some pre-
determined authority, there will be multiple, compet-
ing currencies — with some currencies having more value
than others.

As a simple example, a content publisher (for example,
CNN, Disney, PBS, or BBC) can issue its own currency.
The content publisher could then use its currency to
purchase unused storage and bandwidth resources from
Internet-connected peers. For example, Disney might
offer Bob five Disney units per month if he agrees to
store a Disney video clip and stream it (on Disney’s be-
half) to other peers 100 times per month. Bob can then

use his earned Disney currency to receive other video
clips from Disney for his family’s viewing pleasure. Fur-
thermore, if other content publishers accept Disney cur-
rency for payment, Bob can use his Disney currency to
purchase content from these other publishers. Using a
real-world currency for such micropayments is not feasi-
ble in this scenario due its high transaction costs. Other
application scenarios include the sale and purchase of
raw computing resources for grid systems, storage and
bandwidth for redundant distributed backup systems,
payment-based control of spam, gaming rewards, and
the sale and purchase of basic services such as name res-
olution and proxy services. Importantly — as with mod-
ern, real-world currencies — a lightweight currency can
be transferred among applications - that is, an entity
can earn currency in the context of one application and
spend the same currency in the context of another.

In this paradigm, each currency issuer maintains an
account for each entity that holds some of its currency.
When an entity buys a resource from another entity
with a specific currency, the corresponding currency is-
suer simply debits the buying entities account and cred-
its the selling entities account. Although resources are
traded among peers, currency issuers and other infras-
tructure components would typically run on dedicated
servers. Thus, although trades are peer-to-peer, we are
not necessarily advocating that the trading infrastruc-
ture be peer-to-peer as in [35]. Entites that own and
maintain infrastructure components would also be com-
pensated, most likely through commissions.

In this we also describe the Lightweight Currency Pro-
tocol (LCP), whose messaging and security layers define
how an entities interact with currency issuers. As part
of the protocol, each entity is identified by a globally
unique public key. When an entity wants to transfer a
specific currency to another entity, it establishes a se-
cure channel with the currency issuer and then sends a
message requesting that funds be transferred to a spe-
cific public key. We explain in this paper many of the
decisons that were taken in defining the LCP.

Although we have expressly designed the paradigm
and protocol for enabling a P2P resource market, the
lightweight protocol can potentially enhance or enable
other applications - such as spam reduction and lookup
services - for which transactions with real-world curren-
cies are impractical.

In Section 2 of this paper we outline a number of
approaches to tapping the surplus resource pool. We
also provide an overview of our lightweight currency
paradigm. In Section 3 we describe the Lightweight Cur-
rency Protocol (LCP), which defines four message types
and a security sublayer based on SSL. In Section 4 we
describe how several P2P applications can integrate the
LCP and how currency can be transferred among appli-
cations. These applications include P2P content distri-
bution, P2P distributed archival storage, spam reduction
and derivative services. In Section 5 we examine possi-
ble LCP application interfaces. In Section 6 we describe
related work. In Section 6 we describe the scalability
of the Lightweight Currency System. In Section 7 we
describe related work. In Section 8 we describe future
directions of research.

2 Lightweight Currency
Paradigm

2.1 Why Not Resource Cooperatives

One approach to tapping the surplus peer resource pool
is to design a resource cooperative. A resource co-
operative consists of (i) a large number of entities that
contribute resources to a resource pool, and (i¢) a central
authority which dynamically re-allocates the contributed
resources. To clarify the notion of a resource coopera-
tive, consider the special case of a storage cooperative,
whereby each member contributes disk storage resources
to the cooperative and receives as payment from the co-
operative free globally distributed file backups. In such
an economic system, members do not directly interact
with each other but instead interact with the coopera-
tive’s resource manager. For example, when a member
wants to backup a file, it makes a request to the re-
source manager; the resource manager then determines
the peers in the cooperative over which the file will be
replicated (and perhaps fragmented). The resource man-
ager could run on a centralized node or it could be dis-
tributed across many (or all) of the peers in the coop-
erative. PAST [29], CFS [6] and Oceanstore [16] are
examples of distributed resource management protocols
for P2P archival storage cooperatives.

In a more general resource cooperative, members con-

tribute transmission bandwidth and CPU cycles in ad-
dition to disk storage. Anderson and Kubiatowicz out-
line an architecture for a general resource cooperative[2].
Their architecture includes a central group of servers
that manage the resources in the participating peers.
Anderson and Kubiatowicz suggest using currency for in-
centives, whereby the centralized resource manager cred-
its members for contributing resources and debits mem-
bers for utilizing others’ resources[2].

Although resource cooperatives are potentially viable
long-term paradigms for P2P resource sharing, we be-
lieve they are impractical for near-term adoption (3-5
years). As acknowledged by Anderson and Kubiatow-
icz, centrally managed systems have a chicken-and-an-
egg problem, requiring initial membership levels to be
high for applications to be useful[2]. Thus, due to the
absence of short-term incentives, there is no evolutionary
path for adoption. We instead advocate a more grass-
roots, market-driven approach for jump-starting a global
P2P resource market in the short term. In the long-term,
our approach may become the dominant paradigm; or it
may become a fundamental building block in resource
cooperatives with centralized management.

2.2 Incentives in P2P File Sharing

P2P file sharing systems - such as Napster, Gnutella, and
Kazaa — have had limited success at tapping the surplus
peer resource pool[27, 15, 10]. In these systems, users
volunteer their storage and bandwidth resources to store
and transmit files for the benefit of a large community.
However, it is widely documented that the popular P2P
file sharing systems are havens for “free riders”: a signif-
icant fraction of users do not contribute any resources,
and a minute fraction of users contribute the majority
of the resources[30, 1].

Recently, Kazaa, which is as of this writing the most
popular P2P file sharing system, introduced an incentive
scheme to encourage users to upload files. In this scheme,
each Kazaa client keeps track of the difference between
the number of bytes it has uploaded and the number of
bytes it has downloaded. If this difference is above a
specific threshold, then the user is provided priorities in
download queues. Although this incentive scheme is easy
to cheat (for example, by generating artificial uploads in
a high-speed LAN), we conjecture that a relatively small

fraction of users are actually cheating. One can view the
difference of uploaded and downloaded Kazaa bytes as
a kind of currency that a client earns and spends. We
also conjecture that this scheme incites many (perhaps
a large fraction of) users to be productive uploaders,
thereby abating the free-rider problem.

Our lightweight currency paradigm is akin to the
Kazaa scheme in the sense it uses currency as a means
to incite peers to offer resources to other peers. How-
ever, in our paradigm, the lightweight currency protocol
can be adopted by any P2P application (for example,
P2P content distribution, P2P backup storage, P2P file
sharing). Furthermore, the paradigm allows a peer to
earn currency with one application and then spend the
currency on another application, which should give sig-
nificantly higher trading volumes than would the totality
of disjoint resource markets.

There are interesting analogies between P2P resource
economies and real-world economies. The resource coop-
eratives are analogous to communist economies, in which
there is a central authority that manages prices, curren-
cies and resource allocation. Our lightweight currency
paradigm is somewhat analogous to a free-market, capi-
talist economies, in which individuals trade directly with
each other. However, as we’ll see in the next subsection,
the lightweight-currency paradigm has some components
that are not present in prominent real-world economic
systems - most notably, the currencies are not expected
to be used as legal tender.

2.3 Paradigm Components

We use the term entity as a general term to describe the
user of lightweight currency. An entity can be an individ-
ual, an organization, a computer system, or a software
agent. An entity typically has resources (for example,
storage, bandwidth and CPU cycles) or services (such
as a lookup or banking service) that it is prepared to
share with other entities.

We now list the cornerstones of our paradigm. It con-
sists of five entwined economic and technological com-
ponents:

1. Public-key identification: Each entity is iden-
tified by the public key of a public/private key
pair. This convention provides two benefits: en-

tities can establish globally unique identities with-
out the need of a centralized naming service, and
entities can authenticate and establish secure com-
munication channels. An entity is free to create
any number of identities by generating any number
of public/private key pairs. We will sometimes use
AT1A1, B2B2, and C3C3 to represent public keys in
examples.

. Free-market trading: An entity that wishes to

sell a resource/service sets its own price (or takes
bids) for the resource/service. Entities transact di-
rectly with each other in a pairwise fashion.

. Multiple currencies: The paradigm does not

specify a central authority that issues and manages
currency. Instead, in this ultra-free-market econ-
omy, any entity may issue a currency, which can
then be held by other entities. By letting any en-
tity issue a currency, these currencies will compete
with each other, providing economic efficiencies. In
the long-run, there may be only a small number
of highly coveted currencies, as there are a small
number of coveted real-world currencies today. This
multiple-currency P2P environment is analogous to
the environment during the U.S. westward expan-
sion in the nineteenth century, when wildcat cur-
rencies were issued by local banks, companies, and
even individuals [20].

. Not legal tender: The lightweight currencies are

intended for micro payments, typically made by au-
tomated agents acting on the behalf of entities such
as users and companies. In order to minimize the
transaction costs associated with these payments,
the paradigm does not provide legal recourse for re-
solving trading disputes. The paradigm is instead
based on trust, reputation, and replicated transac-
tions.

e Trust: When first doing business with each
other, the two trading entities will likely make
small deals with each other. The size and/or
frequency of the trades may increase as the en-
tities do more and more business.

e Reputation: We expect the emergence of
third-party reputation systems, in which en-

tities rate each other on the basis of pre-
vious transactions[7, 14, 3, 19, 22, §]. If
an entity A1A1l is considering purchasing re-
sources/services from entity B2B2, A1A1 can
consult a reputation system before proceeding
with the transaction.

e Replicated Transactions: Suppose AlAl
wants to backup its files in other entities’ stor-
age. Because transaction costs are expected to
be minute, A1A1 can copy its files with a large
number of entities. In this way, if one or more
entities turn out to be unreliable - either be-
cause they are dishonest or because they have
unreliable storage systems or network connec-
tions - with high probability A1A1 will still be
able to retrieve its files from some entity with
which it has an agreement.

This not-legal-tender component is perhaps what
distinguishes more than anything else lightweight
currency from real-world currency. We draw an
analogy with the Internet service model. In the
Internet, applications receive no end-to-end guar-
antees on transmission rate or delay; nevertheless,
the Internet’s protocols and resource provisioning
allow it to perform satisfactorily, and at low cost, for
many compelling applications. In the same manner,
lightweight currency transactions do not give buy-
ers any hard guarantees; nevertheless, we expect
lightweight currency to enable many new impor-
tant applications. Because lightweight currencies
are not tied to real-world currencies, we conjecture
that users will feel comfortable delegating trading
decisions to local trading agents, which would be
broadly directed by user-specificed policies.

. Simple protocol: In addition to implementation
simplicity, one of the goals of the lightweight cur-
rency paradigm is ease of integration with new and
existing services. For this reason, we avoid defining
a complex protocol that provides strong anonymity.
Consequently, currency issuers will be able to ob-
serve money flows between entities (which are iden-
tified by public keys), but will not know what has
been purchased. The issuer will also be able to
ascertain the IP address of these entities. If IP

anonymity is desired, entities can hide their IP ad-
dresses to issuers by using go-between entities to
perform message forwarding for them.

2.4 Operational Overview

A currency issuer maintains an account for each entity
that holds its currency. The set of accounts maintained
by a currency issuer can be thought of as a table that
maps public keys to units held. An entity holding units
of a given currency can send a message to the currency
issuer to have funds transferred from its account to an-
other entity’s account. Typically, a transfer occurs dur-
ing a sale of resources or services; the entity that re-
quests transfer of funds is the buyer and the recipient of
the funds is the seller. When a buying entity transfers
units to a selling entity, the currency issuer debits the
buyer’s account by the transfer amount and credits the
seller’s account by the same amount. If the seller does
not have an account with the issuer, the issuer creates
an account for it.

The Lightweight Currency Protocol (LCP) uses four
messages to transfer funds in a given currency from one
entity to another.

o transferFundsRequest message: Sent by the
buying entity to the currency issuer; specifies
amount to be transferred and to which entity (iden-
tified by a public key).

e transferFundsResponse message: Sent by the
currency issuer to the buying entity; indicates suc-
cess or failure of the transfer.

e getDepositsRequest message: Sent by the sell-
ing entity to the currency issuer. When the selling
entity expects funds to be transferred to it from an-
other entity, it sends this message to the currency
issuer.

e getDepositsResponse message: Sent by cur-
rency issuer to selling entity; informs seller of the
amounts that have been transferred into its account
since the issuer last replied to a getDepositsRequest
message.

We will describe these four message types in greater
detail in Section 3.

claire

alice 100

claire

alice 40

Figure 1: Alice transfers 100 Claire dollars to Bob

Figure 1 illustrates the basic components of the
lightweight currency. In this figure, we use the names
Alice, Bob and Claire as synonyms for three public keys.
The scenario is that Alice buys something from Bob with
currency issued by Claire, which we refer to as Claire
dollars.

Suppose that Alice initially holds 100 Claire dollars.
This means that Claire maintains an account for Alice
in which 100 units are recorded. Also suppose that Alice
wants to transfer 10 Claire dollars to Bob. The following
steps are taken:

1. Alice establishes a secure connection with Claire,
and sends a transfer funds request message that in-
structs Claire to transfer 10 units to Bob.

2. Claire debits Alice’s account by 10 and credits Bob’s
account by 10. Claire returns a transfer funds re-
sponse message to Alice.

3. Bob then establishes a secure, authenticated con-
nection with Claire, and sends a get deposits request
message.

4. In a get deposits response message, Claire returns
a list of deposits made to Alice’s account. After
transmitting the list, Claire may delete these de-
posit records in order to conserve space.

As previously discussed, lightweight currency is not
intended to function as a general replacement for real-
world currencies, but as an enabler of applications in
which real-world currencies are impractical. In particu-
lar, it supports micro-payment based systems. In these
systems, entities may fail to uphold contracts. In many
cases, these failures are related to factors outside their
control, such as network reliability. In this case, failure
is not translated into legal recourse, but rather trans-
lated into diminished reputation and corresponding low-
ering of prices for service contracts (or complete loss of
business). As an example, consider a market in which
storage contracts are sold. These contracts provide the
right to the buyer to write or read bytes at a rate of x
dollars per megabyte over a period of 1 month. Suppose
that it is believed that A1A1 fails to provide contracted
read and write services with probability 0.25, and that
B2B2 and C3C3 each fail with probability 0.5. In this
case, purchasing service from B2B2 and C3C3 will pro-
vide a combined failure rate equal to purchasing service
solely from A1A1. Thus, a fair pricing scheme would set
the combined price for contracts from B2B2 or C3C3 to
be equal to the price for a contract from A1Al. The
lightweight currency encourages this type of probabilis-
tic pricing rather than dispute resolution accomplished
through legal recourse.

3 Lightweight Currency
Protocol

In this section we provide an overview of LCP, which
is at the core of P2P resource market paradigm. The

complete specification of the protocol can be found at
[34].

Although lightweight currency is not real-world
money, it nevertheless has value, and so it is appropriate
for lightweight currency protocol messages to be trans-
ported over a secure channel that protects from known
communication threats. Our analysis reveals that the
use of SSL/TLS can be used to accomplish this in an
efficient manner.

In SSL, the client first establishes a TCP connection
with the server, and then the two ends execute a hand-
shake sequence in which an SSL session is established.
The session is comprised of various values needed for
encryption and decryption and other values needed for
validating message integrity. Because this handshake op-
eration is computationally expensive (involving public-
key cryptography), SSL provides a mechanism whereby
the client may resume the session across TCP connec-
tions. Because a holder of a currency may frequently
exchange messages with the currency issuer, it is there-
fore advantageous for entities to maintain records of their
past sessions, and for the currency holder to resume ses-
sions with the currency issuer rather than establish new
ones. In fact, currency issuers can encourage this behav-
ior by charging higher transaction fees for transactions
that do not resume sessions.

We choose to use a SOAP message format, because
of its broad support across the major development en-
vironments. Thus, lightweight currency can be easily
integrated into new and existing applications with the
aid of web service development tools. Additionally, the
protocol can evolve more easily, because an XML mes-
sage format is very flexible.

Another fundamental design choice was whether to use
a push or pull method for entities to be informed of the
arrival of funds in their accounts.

e Under the push approach, currency issuers func-
tion as clients to interfaces exposed by their cur-
rency holders. When a currency issuer receives a
request to transfer funds from a buying entity to a
selling entity, it connects to the selling entity and
sends a notification that a deposit was made to its
account.

e Alternatively, under the pull approach, the issuer
queues deposit notifications for its currency holders,

and waits for these entities to connect to the issuer
and request them.

The push approach to deposit notifications has a seri-
ous disadvantage when compared to the pull approach —
it requires currency holders to expose an interface that is
locatable by currency issuers. In the P2P resource mar-
ket, many entities are not behind static IP addresses,
and therefore a dynamic lookup service would be needed
to map public key identifiers to IP addresses. With the
pull approach to retrieveal of deposit notifications, cur-
rency issuers always play the role of server in messaging
operations, eliminating the need for a specialized look
up service, and simplifying the design requirements for
client software.

Under the pull approach, clients need to locate the
interfaces of currency issuers who are identified by pub-
lic key identifiers. Rather than implement a specialized
lookup service to do this, it is possible to rely on the ex-
isting DNS lookup service. Therefore, currency issuers
would be identified by domain names that are bound to
their public keys by trusted certificate authorities. Sim-
ple currency holders, on the other hand, only function
as clients in communication channels, and thus would
not need to publish a domain name for lookup purposes.
Thus, currency holders can operate without acquiring a
certificate, and simply use unsigned or self-signed public
keys.

Currency issuers that use a certificate to bind their
public key to a domain name publish a Web Services De-
scription Language (WSDL) document called lep.wsdl
that describes their Web Service interface. Clients
retrieve the WSDL document by requesting lcp.wsdl
through port 80 of the issuer’s domain name using unen-
crypted HT'TP. The WSDL document will conform to
generally accepted standards for whatever version of the
LCP the issuer is using, however, individual currency is-
suers have the freedom to bind the service to a URL of
their choosing. In other words, all parts of the WSDL
document will be identical across all issuers except for
the service element, which specifies a concrete binding
of the interface to a specific URL.

In the following, we explain the elements of messages
used by currency holders to transfer funds to other enti-
ties by way of an example. In these protocol examples,
we exclude the containing SOAP envalope and related

details.

Suppose that Alice and Bob are two entities that have
negotiated some type of purchase, and it is time for
Alice to make a payment to Bob. In their negotia-
tion, both sides agreed to a payment of 100 money.com
dollars, that is, for 100 units of the currency issued
by the entity whose Web service interface is defined in
http://money.com/lcp.wsdl. Suppose that Alice has con-
nected with money.com previously, but Bob has not. In
this case, Alice resumes her SSL session with money.com,
and submits the following request to transfer funds to
Bob.

<transferFundsRequest>
<recipient>BOCF...7E24</recipient>
<amount>100</amount>
<transactionId>12345678</transactionId>
<messageCounter>3398</messageCounter>

</transferFundsRequest>

The recipient element contains Bob’s public key iden-
tifier. If money.com does not have an account for this
public key, money.com will create the account after re-
ceiving the message, and will set its balance to 100. The
transactionld field contains an identifier that Alice and
Bob agreed to during their negotiations; it provides a
way for Bob to associate the transaction with Alice when
he retieves deposit notifications from money.com.

The purpose of the message counter in the trans-
ferFundsRequest message is to allow retransmission of
messages in the case that network failure results in the
sender’s inability to determine whether a transfer mes-
sage has arrived or not. The sender can retransmit trans-
ferFundsRequest messages without fear that the cur-
rency issuer will execute a given transfer request more
than one time. In this case, currency issuers must record
the state of the message counter for each currency holder,
and discard redundant messages.

Money.com returns the following LCP response to the
previous transferFundsRequest message:

<transferFundsResponse>
<result>success</result>
<fee>1.2</fee>

</transferFundsResponse>

Money.com will debit Alice’s account by 101.2 units,
and credit Bob’s account by 100 units. After this op-
eration is performed, money.com queues a deposit no-
tification, which is delivered to Bob when he requests
it. In the case that Bob has never connected with
money.com before, he will initiate an new SSL session
with money.com, and send the following getDepositsRe-
quest message to obtain a list of deposits made to his
account:

<getDepositsRequest>
<millisecondsWait>3000</millisecondsWait>
</getDepositsRequest>

Because Alice and Bob may send their messages at
the same time, it is possible that Bob’s request for de-
posit notifications arrive before Alice’s transfer funds re-
quest. For this reason, Bob specifies a non-zero millisec-
ondsWait value that tells money.com to wait at least
that many milliseconds before returning an empty list of
deposits. Money.com returns the following response to
Bob:

<getDepositsResponse>
<deposits>
<deposit>
<transactionId>1234</transactionId>
<amount>100</amount>
</deposit>
</deposits>
<fee>0</fee>
<balance>9200</balance>
</getDepositsResponse>

The getDespoitsResponse contains three child ele-
ments: an array of deposit elements, a fee element, and
a balance element. In this case, there is only a single
deposit, which contains the amount deposited and the
transactionld that Bob uses to associate the funds ar-
rival event with Alice. The fee element contains any fee
imposed by the currency issuer for processing a getDe-
spositsRequest; a non-zero fee can be used to recoup the
cost of processing these messages. Finally, the balance
element reports the balance of funds in Bob’s account.

It should be noted that the protocol is still in exper-
imental stages, and that at this point it has been de-
signed to ease implementation. For this reason, we rely

on SSL/TLS rather than invent a special purpose secu-
rity protocol. Also, rather than use the more flexible
document-stlye SOAP message mechanism, we chose to
use the RPC-style mechanism, because of greater sup-
port and programmer familiarity. The only optimization
consideration that has been taken into account is to use
SSL session resumption to reduce encryption/decryption
overhead.

4 P2P Resource Market Exam-
ples

An important distinction is between raw resources and
derived services. Raw resources include storage, band-
width and compute power. These raw resources pro-
vide the building blocks for all other tradable services,
such as data backup, multimedia streaming, proxy ser-
vices, lookup services, instant messaging, software dis-
tribution, media distribution, etc. Therefore, a resource
market in which raw resources are traded is possible. De-
rived services can thus be produced using the resources
provided through the raw resource market.

Raw Resource Market

One possibility for building the raw resource market is
to use a basic storage contract that grants to the buyer
the right to read and write bytes at a specified price
into a block of memory for an interval of time. As an
example, suppose Bob sells to Alice a storage contract
with the following specifics:

In exchange for 10 Claire dollars, Bob grants to
Alice 1 megabyte block of memory into which
Alice can write bytes in exchange for 1 Claire
dollar per kilobyte, and out of which she can
read bytes at a rate of 4 Claire dollars per kilo-
byte. This agreement is valid for the period be-
ginning at 12 noon GMT 12-jul-2003 and end-
ing at 12 noon GMT 26-jul-2003.

Notice that this contract makes no guarantees on data
transmission rates. We assume that Alice and Bob have
an ongoing relationship, and that Alice maintains a his-
tory of read and write transmission rates from/to Bob.
Alice uses her assessment of Bob’s quality of service when

deciding how much to pay for storage contracts with
Bob.

Alice can use her contracted rights for various appli-
cations. For example, she can store data with Bob for
backup purposes. As another example, Alice could be a
content publisher, and she uses her storage contract with
Bob to distribute content. Thus, Alice does not need to
be a consumer of Bob’s specific services, because the
currency they use in their transactions is fully transfer-
able and not tied to a specific application. This provides
in peer-to-peer systems a natural, market-driven mech-
anism to allocate resources to applications.

P2P Content Distribution

When an entity sells something, it accepts payment in
a currency that it deems worthwhile. For example, sup-
pose that news.com sells news stories in video format
with prices in a currency issued by money.com. Alice
desires to view these videos, and so she configures her
storage sales service to accept payments in money.com
dollars. In turn, news.com may use money.com dollars
it earns to purchase storage contracts from Alice, in or-
der to deliver the video from Alice to other lightweight
currency paying customers.

To bootstrap this type of system, money.com could
construct a storage selling/video player system that
users could download and install in their systems. Then,
money.com sells video delivery software to news.com and
other video content publishers. These relatively small-
scale content publishers can then distribute their con-
tent over a peer-to-peer delivery system that dynami-
cally scales to accommodate any number of systems with
minimal impact on bandwidth resources of the content
publishers. With valued money.com dollars in circula-
tion, any number of other services can be sold in ex-
change for these dollars, or for other competing currency.

P2P Distributed Archival Storage

Lightweight currency can be used as the basis of a
P2P distributed storage archival service. In such a sys-
tem, entities purchase storage contracts in the raw re-
source market in order to replicate their archives across
geographically distributed nodes. Such an approach is
a means to preserve data from loss due to catastrophic
events, such as fire, flooding, earthquake, war, etc. in

which locally stored backups are destroyed along with
the original data.

Note that improved efficiency is possible with the use
of a transferable currency. For example, suppose that
two P2P applications operate as closed systems. In one
system, users stream video on demand from a news ser-
vice; in the other system, users store large data sets for
long-term archival purposes. In the content delivery ap-
plication, the scarce resource is likely to be bandwidth,
while the scare resource in the archival system is likely to
be storage. If both systems were to buy and sell resource
contracts in the raw resource market, greater economies
of scope result.

Spam Reduction

Another possible application of lightweight currency
is to reduce spam by requiring a payment for the deliv-
ery of email. The use of payments is an acknowledged
solution to the spam problem [ref]. Because lightweight
currencies are fully transferable between entities and not
tied to any specific application context, they are a nat-
ural candidate to be used in payment-based control of
spam.

Derivative Services

Because many computers are assigned IP addresses
dynamically, peer-to-peer applications that require the
user to expose an interface (for example, SIP appli-
cations [SIP]) require the user be locatable through a
lookup service. Such a lookup service could charge fees
in (lightweight dollars) to provide an economic incentive
for providing the service.

Another likely derivative service is banking. With
banking, a user relies on a trusted service to manage
financial transactions on its behalf. This bank would
provide a Web interface for users to check received pay-
ments and their balances, and also to transfer payment
to other entities.

5 Application Interfaces with

LCP

In general, in order for entities to participate in markets
that rely on lightweight currency, entities will need appli-

10

cations that earn currency along with applications that
spend currency. There are special cases when this may
not be true, such as users that purchase lightweight cur-
rency with real-world money for the purpose of spend-
ing through a single application. Another special case
is when an entity uses only currency it issues to pur-
chase services, and does not provide any service for which
the currency is redeemable. However, in this section we
will focus on those entities that wish to earn currency
through the sale of one or more services, and spend cur-
rency through one or more applications. As we explain
below, LCP is sufficiently flexible to allow for a variety
of application interfaces.

Suppose an entity has multiple applications (for ex-
ample, a raw storage application and a raw CPU cycle
application) that are engaged in selling and buying ac-
tivities. The applications that spend money should be
supplied by the applications that earn money. There are
two broad approaches to solving this integration prob-
lem: one based on a single identity, and another based
on multiple identities.

Under the multiple identity approach, each applica-
tion creates a public key identity. An application that
earns currency has that currency deposited into accounts
that are associated with their identity. An application
that spends money also generates a public key for the
purpose of receiving money from the earning applica-
tions, and then spending this money for services pro-
vided by the applications of other entities. For this sys-
tem to work, users must either manually instruct earning
applications to transfer money to spending applications,
or to specify polices for these systems to follow for auto-
matic transference of funds from the accounts or earners
to the accounts of spenders.

For the remainder of this section we focus on the single
identity approach. Under this approach, a single soft-
ware agent is used to manage all LCP interactions with
other entities. There are two variations on the single
identity approach: one that relies on a local LCP agent,
and another that relies on an external LCP agent that
we refer to as a bank service.

Under the local LCP agent approach, the user installs
agent software to communicate with currency issuers.
In this case, the local LCP agent must expose a local
interface through which local application software can
communicate.

5.1 Bank Services

Finally, the user can use a bank service to coordinate
earning and spending of currency. In this approach,
the user relies on a trusted service to manage its ac-
counts and financial transactions on its behalf. This
bank would provide a Web interface for users to man-
ually control their accounts, or configure the service so
that user agents (such as media players, raw resource
sales, archival systems, online games, etc.) would be
given appropriate rights to control funds in the account.
Such a service is useful for users that wish to consolidate
their lightweight finances under a single system, rather
than letting applications generate their own lightweight
currency identities. It is also useful for users that de-
sire to access lightweight currency dependent application
functionality from more than one computer. Also, the
user can safely manage his identity and currency hold-
ings without fear that a local system crash will result
in the permanent loss of his private key, and thus his
established identity.

There are two basic types of banking service: trans-
parent and opaque banking. In transparent banking,
the user’s identity is a unique public key; however, now
the bank service has the responsibility of storing and
securing the user’s associated private key. In opaque
banking, the user’s identity is comprised of the bank’s
public key identifier plus a name unique among the set
of bank customers. For opaque banking, the user does
not need a public/private key pair for LCP. For opaque
banking, the bank can use a trusted certificate authority
to bind its public key to its URL. Thus, for example,
if Bob has an account with bank.com, and his identifier
with bank.com is bob, then Bob’s trading partners can
input the user-friendly name bob@bank.com into their
application interfaces to identify Bob and locate the in-
terface through which funds can be delivered to Bob.
Additionally, this simplifies the method by which Bob
configures his application software, because rather than
inputting a long public key, he simply inputs the bank’s
URL, and Bob’s logon id and password with bank.com.

5.2 Comprehensive Example

Now, we wish to illustrate with a concrete example how
the aforementioned systems might interact for a typical

11

MOoney.com

video.com

hank.com

Figure 2: Example with bank

scenario. The scenario is that user Alice wants to view
a video available through video.com. Alice has a me-
dia player that communicates with an LCP agent that
runs on her own system. Alice earns currency by selling
storage and bandwidth in the raw resource market.

Bob also sells storage in the raw resource market.
However, unlike Alice, Bob uses the bank service located
at bank.com. In our example, video.com has a basic stor-
age contract with Bob, and that under this contract, Bob
is currently storing the video that Alice is requesting.

We assume for this example that Alice, Bob and
video.com are using money issued by money.com.

Figure 2 illustrates the interactions between entities.
Alice begins by connecting to video.com (1), and nego-
tiating for the purchase of her desired video. After both
ends come to agreement regarding price, Alice next con-
nects to money.com and requests that funds be trans-
ferred to video.com (2). At the same time, video.com
connects to money.com and requests a statement of ac-
count activity (3). Incorporated into this request mes-
sage is an element labeled max-wait-time, which is an in-
struction to money.com to not return an empty list until
waiting the specified period of time. This max-wait-time
element is used in case the seller’s request reaches the is-
suer before the issuer has processed the transfer funds
request from the buyer.

After video.com obtains notification of the deposit of
funds from Alice, it requests that money.com transfer
funds to Bob. The amount of funds requested in this case
will equal the read price specified in the storage contract
that video.com purchased from Bob. The message that

video.com constructs for this transfer operation will in-
clude the public key for bank.com and a userid element
that contains the identifier bob, which identifies Bob’s
bank account.

Now, video.com is prepared to execute its read rights
with Bob. To do this, video.com connects to Bob, and
requests retrieval instructions (4). In response to this
request, Bob connects to his bank to check that the pay-
ment for the read operation has arrived (5). In turn,
bank.com connects to money.com to request recent ac-
count activity (6). After money.com informs bank.com
that the expected funds have arrived, bank.com passes
on the confirmation to Bob. Now, Bob responds to
video.com’s read request by sending retrieval instruc-
tions.

After obtaining the retrieval instructions, video.com
returns them to Alice. Finally, Alice connects to Bob,
and uses the retrieval instructions to retrieve the video
(7).

If Bob were using a transparent, instead of an opaque,
banking service at bank.com, then the example would
have the same number of steps. The only change would
be Step 4, in which the message from video.com to
money.com would omit the userid element (and the
bank’s public key), and simply provide a public key that
represents Bob.

6 Scalability

Perhaps the principle advantage of designing an applica-
tion as a peer-to-peer system is its potential to scale
to any number of nodes. If the lightweight currency
paradigm is to be used in support of peer-to-peer appli-
cations, then its scalability ought to be evaluated. We
identify several possible solutions to the scaling problem.

If systems are designed to accept an increasing num-
ber of currencies, then it is possible that currency poli-
cies can be arranged so that the number of currencies
in circulation increases in proportion to increases in the
number of new nodes. In this case, currency issuers will
need to handle approximately the same average number
of transactions. However, if pair-wise relationships oc-
cur between randomly selected nodes, then negotiations
between nodes will require settling on a currency from a
growing list of currency providers. However, in the case

12

that trading relationships between nodes are relatively
stable, then this complexity will not be an issue.

If systems (or their users) do not accept an increasing
number currencies as new nodes are added to the sys-
tem, then one or a few large currency issuers will dom-
inate. In this case, there must be economic incentives
for these issuers to exist. If users are willing to pay for
lightweight currency, then large-scale issuers can recoup
their expenses (or make a profit) for creating and oper-
ating the physical infrastructure to support a large-scale
operation. If on the other hand users are unwilling to
purchase lightweight currency from large issuers, then an
issuer would be motivated to operate a currency only to
the extent that it provides it with services it needs. If the
demand for the issuers currency exceeds levels needed by
the issuers to fulfill its needs, then there will be a short-
age of this currency in the market place, and peers will
be forced to use other available currencies to complete
transactions. In this way, the market is forced to ac-
cept multiple currencies. Because issuing a currency is
straightforward, a general shortage of currency will in-
cite peers to issue currencies in place of providing other
services as a means to establish purchasing power in re-
source markets.

7 Related Work

Many digital cash schemes were proposed in the mid
1990s, including Digicash, CyberCash and First Virtual
[11] [36]. Because of their complexity — including public-
key certificates, serial numbers, and blinded signatures
— these protocols are inappropriate for the P2P resource
market. Moreover, because of poor timing (mid 1990s)
and system complexity, the startups behind most of
these digital cash schemes have failed. One digital cash
startup, Paypal [24], is successful. Paypal’s currency is
frequently used by eBay buyers and sellers. However,
Paypal is not suitable for the P2P resource market. It
collects a hefty commission from sellers, and users need
to link their paypal accounts into their checking accounts
or credit cards, which gets too close to the user’s real
money. Instead, we are proposing a scheme that is dis-
tinct from real money, allowing users to more comfort-
ably engage in automated resource sharing markets.
There are dozens of P2P file sharing projects to date

(for example, see [27, 15, 10, 21]). Most of these projects
focus exclusively on file sharing and do not extend to
P2P content distribution, backup storage, and grid com-
puting. The now defunct MojoNation attempted to in-
tegrate currency into P2P file sharing[21]. We believe
that MojoNation failed because it was a profit-driven
enterprise rather than an open-source driven project, it
focused on file swapping rather than a generic P2P re-
source market, and it employed a relatively complex cur-
rency model. As discussed earlier, Kazaa has implicitly
adopted a currency scheme to incite users to upload files.
Kazaa’s currency shares some characteristics with our
own - for example, neither are tied to real-world money
or are legal tender. However, the Kazaa currency is lim-
ited to the Kazaa application; the currencies proposed
in this paper are issued by arbitrary entities and trans-
ferred among applications.

Cooper and Garcia-Molina [5] have recently studied
bidding and bartering for storage space in a P2P data
archival system. Although their approach uses a pair-
wise transaction model, users transact directly in stor-
age units rather than in currency units. The paper [5]
does not explore broader resource cooperatives that in-
clude transmission bandwidth and computation as re-
sources, and the paper does not develop a currency
model (lightweight or heavyweight). Furthermore, the
focus of the work is on simulating different bidding mech-
anisms rather than developing currency protocols and
prototypes.

Many researchers are currently exploring distributed
hash tables (DHTS) for building novel P2P systems and
applications [26, 32, 28, 38]. We briefly remark that
DHTs and LCP can be coupled. For example, a DHT-
based archival storage system can be built in which the
data behind the keys does not contain the files them-
selves but instead pointers to the files. When a user
wants to replicate a file (for archival purposes), the user
transacts in the P2P resource market to establish a con-
tract with a partner; once the file is replicated in the
partner’s peer, the corresponding pointer file in the DHT
location service is updated to point to the new copy.

Recently, there has been a burst of activity in P2P eco-
nomics. A number of research groups are studying rep-
utation systems for P2P systems [7, 14, 3, 19, 22, 8, 13].
This work in P2P reputation systems complements our
own: because the currencies provide no legal recourse,

13

assurances need to be provided through other mecha-
nisms, such as reputation, trust, and transaction repli-
cation.

There has also been a flurry of activity concentrated
on incentives in P2P systems. Some of this work argues
for using currency to incite peers to contribute resources.
The KARMA framework uses a single currency and has
been designed to integrate with a DHT infrastructure; in
particular, the accounting and banking are distributed
over the P2P nodes within the DHT [35]. Part of our
vision is that the currency infrastructure (that is, cur-
rency issuers and banks) is to be implemented on dedi-
cated servers, whereas the resources are to be traded di-
rectly between pairs of peers. Such a hybrid P2P/client-
server architecture has also been used in instant messag-
ing (where buddies are located with dedicated servers)
and Napster (which maintained a centralized directory
of users’” MP3s) [18]. As with Web-based e-mail (e.g.,
Hotmail and YahooMail), we expect major currency is-
suers to scale by adding more servers to server farms.
A coin-based micropayment system that has been de-
signed for P2P systems is presented in [37]. The scheme
uses legal recourse, and its target application scenario
is the sale of content. Other recent papers investigating
incentives in P2P applications include [25, 9, 4, 17, 31].
Game-theoretic models of micro-payment schemes are
presented in [12, 19].

8 Future Work

In this paper we introduced a lightweight currency
paradigm and protocol for P2P resource and service
trading. Using this paradigm and protocol as a foun-
dation, we are currently exploring several avenues of re-
search. We are implementing the LCP in several appli-
cations, including a peer-driven content streaming sys-
tem and an archival storage system. We are investigat-
ing the implementation of scalable currency issuers and
LCP banks. We are examining alternative applications
of lightweight currency, including spam reduction [33].
We are developing a theory for optimal selection of ser-
vice providers based on price and estimated reliability.
We are also constructing a Web site for developers inter-
ested in participating in the lightweight currency project.

References

[1]

E. Adar and B. Huberman. Free Riding
on Gnutella, October 2000. First Monday,
http://www firstmonday.dk/issues/issue5-10.

D. Anderson and J. Kubiatowicz. The Worldwide
Computer. Scientific American, 286:28-35, March
2003.

A. Asvanund, S. Bagla, M.H. Kapadia, R. Kr-
ishnan, M.D. Smith, and R. Telang. Intel-
ligent Club Management in Peer-to-Peer Net-
works. In Workshop on Economics of Peer-to-
Peer Systems, jun 2003. Papers published on
Web site: http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

B. Chun, Y. Fu, and A. Vahdat. Boot-
strapping a Distributed Computational Econ-
omy. In Workshop on Economics of Peer-to-
Peer Systems, jun 2003. Papers published on
Web site: http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

B.F. Cooper and H. Garcia-Molina. Bidding for
storage space in peer-to-peer data preservation sys-
tems. In Proceedings of Multimedia Computing and
Networking 2002 (MMCN’02), January 2002.

F. Dabek, , F. Kaashoek, R. Morris, D. Karger,
and I. Stoica. Wide-Area Cooperative Storage with
CFS. In Proceedings of ACM SOSP’01, Banff,
Canada, October 2001.

C. Dellarocas and P. Resnick. Online Reputa-
tion Mechanisms: A Roadmap for Future Re-
search. In Workshop on Economics of Peer-to-
Peer Systems, jun 2003. Papers published on
Web site: http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

D. Dutta, A. Goel, R. Govindan, and H. Zhang. The
Design of a Distributed Rating Scheme for Peer-to-
Peer Systems. In Workshop on Economics of Peer-
to-Peer Systems, jun 2003. Papers published on
Web site: http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

14

[9]

[10]

[11]

[13]

[17]

M. Feldman, K. Lai, J. Chuang, and I. Sto-
ica. Quantifying Disincentives in Peer-to-Peer Net-
works. In Workshop on Economics of Peer-to-
Peer Systems, jun 2003. Papers published on
Web site: http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

The Gnutella Protocol Specification. Available from
http://gnutella.wego.com.

S. Godin. Presenting Digital Cash. Sams, Indi-
anapolis, 1996.

P. Golle, K. Leyton-Brown, I. Mironov, and M. Lil-
libridge. Incentives for Sharing in Peer-to-Peer Net-
works. In Proc. of the 2001 ACM Conference on
Electronic Commerce, 2001.

B. Gross and A. Acquisti. Balances of Pow-

ery on eBay: Peers or Unequals. In Work-
shop on Economics of Peer-to-Peer Sys-
tems, jun 2003. Papers published on Web
site: http://www.sims.berkeley.edu/research/

conferences/p2pecon/index.html.

S.D. Kamvar, M.T. Schlosser, and H. Garcia-
Molina. The eigentrust algorithm for reputation
management in p2p networks. In Proceedings of the
Twelfth International World Wide Web Conference,
2003.

KaZaA Web Site. http://www.kazaa.com.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwin-
ski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, , and
B. Zhao. OceanStore: An Architecture for Global-
Scale Persistent Storage. In Proceedings of the Ninth
international Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 2000), November 2000.

and H. Garcia-Molina.
Problem

S. Kumvar, B. Yang,
Addressing the Non-Cooperation
in Competitive P2P Systems. In Work-
shop on Economics of Peer-to-Peer Sys-
tems, jun 2003. Papers published on Web
site: http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

[18]

[19]

[26]

[27]

28]

J.F. Kurose and K.W. Ross. Computer Network-
ing: A Top-Down Approach Featuring the Internet.
Addison-Wesley, Boston, MA, 2002.

K. Lai, M. Feldman, I. Stoica, and J. Chuang.
Incentives for Cooperation in Peer-to-Peer Net-
works. In Workshop on Economics of Peer-to-
Peer Systems, jun 2003. Papers published on
Web site: http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

Cedar rapids website. http://www.cedar-

rapids.org/ushers.
Mojonation web site. http://www.mojonation.com.

T. Moreton and A. Twigg. Trading in Trust, Tokens
and Stamps. In Workshop on Economics of Peer-
to-Peer Systems, jun 2003. Papers published on
Web site: http://www.sims.berkeley.edu/research/
conferences/p2pecon /index.html.

A.M. Odlyzko. The history of communications and
its implications for the Internet. Available online at
http://www.research.att.com/amo, 2000.

Paypal web site. http://www.paypal.com.

K. Ranganathan, M. Ripeanu, A. Sarin, and
I. Foster. To Share or Not to Share. In
Workshop on Economics of Peer-to-Peer Sys-
tems, jun 2003. Papers published on Web
site: http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network.
In Proceedings of the 2001 ACM SIGCOMM Con-
ference, 2001.

K.W. Ross and D. Rubenstein.
Systems: Infocom 2003
http://cis.poly.edu/ ross/papers.

P2pP
Tutorial.

A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In Proceedings of IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), pages 329-350, November
2001.

15

[29]

[33]

[34]

[35]

A. Rowstron and P. Druschel. Storage Manage-
ment and Caching in PAST, A Large-scale, Persis-
tent Peer-to-peer Storage Utility. In Proceedings of
ACM SOSP’01, Banff, October 2001.

S. Saroiu, P. Gummadi, and S.D. Gribble. A Mea-
surement Study of Peer-to-Peer File Sharing Sys-
tems. In Proceedings of International Conference
on Distributed Computing Systems, 2002.

J. Shneidman and D. Parkes. Rationality and Self-
Interest in Peer-to-Peer Networks. In Proceedings
of 2nd Int. Workshop on Peer-to-Peer Systems, feb
2003.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. In Pro-
ceedings of the 2001 ACM SIGCOMM Conference,
2001.

Student and D. Turner. Spam and lightweight cur-
rency.

D.A. Turner and K.W. Ross. Lightweight Currency
Protocol. Internet Draft, September 2003. Expires
2004.

V. Vishnumurthy, S. Chandrakumar, and E. Gun
Sirer. KARMA: A Secure Economic Frame-
work for Peer-to-Peer Resource Sharing. In
Workshop on Economics of Peer-to-Peer Sys-
tems, jun 2003. Papers published on Web
site: http://www.sims.berkeley.edu/research/
conferences/p2pecon/index.html.

P. Wayner. Digital Cash: Commerce on the Net.
Moran Kaufmann, San Francisco, 1995.

B. Yang and H. Garcia-Molina. PPay: Micropay-
ments for Peer-to-Peer Systems. In Proceedings of
the 10th ACM Conference on Computer and Com-
munications Security (CCS), oct 2003.

B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, 2001.

