
Object Replication Strategies in Content Distribution Networks

Jussi Kangasharju

Institut Eur�ecom

Sophia Antipolis

France

James Roberts

France T�el�ecom R & D

Issy-les-Moulineaux

France

Keith W. Ross

Institut Eur�ecom

Sophia Antipolis

France

Abstract

Recently the Internet has witnessed the emergence of
content distribution networks (CDNs). In this paper
we study the problem of optimally replicating objects
in CDN servers. In our model, each Internet Au-
tonomous System (AS) is a node with �nite storage ca-
pacity for replicating objects. The optimization prob-
lem is to replicate objects so that when clients fetch ob-
jects from the nearest CDN server with the requested
object, the average number of ASs traversed is mini-
mized. We formulate this problem as a combinatorial
optimization problem. We show that this optimiza-
tion problem is NP complete. We develop four natural
heuristics and compare them numerically using real In-
ternet topology data. We �nd that the best results are
obtained with heuristics that have all the CDN servers
cooperating in making the replication decisions. We
also develop a model for studying the bene�ts of co-
operation between nodes, which provides insight into
peer-to-peer content distribution.
Keywords: Optimal replication strategies, Con-

tent Distribution Networks, Peer-to-peer networks,
Cooperation

1 Introduction

Recently the Internet has witnessed the emergence of
content distribution networks (CDNs). CDNs are tar-
geted for speeding up the delivery of normal Web con-
tent and reduce the load on the origin servers and
the network. CDNs, such as Akamai [1] or Digital
Island [4], distribute content by placing it on content
servers which are located near the users. A content
provider can sign up for the service and have its con-
tent placed on the content servers. The content is
replicated either on-demand when users request it, or
it can be replicated beforehand, by pushing the con-
tent on the content servers.
In this paper we study the problem of optimally

replicating objects in CDN servers. We consider each
AS as a node in a graph with one CDN server with

�nite storage capacity for replicating objects. The op-
timization problem is to replicate objects so that the
average number of ASs traversed is minimized when
clients fetch objects from the nearest CDN server con-
taining the requested object. We formulate this prob-
lem as a combinatorial optimization problem and show
that this optimization problem is NP complete. We de-
velop four natural heuristics and compare them numer-
ically using real Internet topology data. Our results
show that the best results are obtained with heuristics
that have all the CDN servers cooperating in making
the replication decisions. We also develop a model for
studying the bene�ts of cooperation between nodes in
a peer-to-peer networking context.
This paper is organized as follows. Section 2

presents the network topologies we used. In Section 3
we develop our cost model. Section 4 presents the
replication heuristics we have developed and Section 5
presents our evaluation methods and results. Section 6
presents peer-to-peer content distribution and devel-
ops and evaluates a model for cooperation in peer-
to-peer networks. Section 7 discusses related work.
Finally, Section 8 concludes the paper and presents
directions for future work.

2 Network Model

Our network model is based on the actual Internet
AS topology. To construct the topology, we will use
data provided by NLANR [12]. This data represents
summaries of Internet routing data collected in the
Route Views Project [15] from 1997 to beginning of
2000. These summaries provide information about
which ASs are connected to each other. From these
summaries we constructed a graph where the nodes
are the ASs and the edges are the inter-AS connec-
tions. We then calculated the shortest paths between
all the node pairs, and used this data to form a dis-
tance matrix for the network.
As discussed in [5], this method is slightly inaccurate

because we cannot infer that all the connections are
valid. For example, consider a small ISP that buys

1



connectivity from two bigger ISPs. For each of the
providers, our graph will show an edge between the
small ISP and the provider, but in reality the small
ISP would not route traÆc from one of its providers
to another. This is not likely to be a problem, though,
since in most cases the two providers in this case either
have a direct link between them or are able to connect
via a common provider.
A CDN tries to put its content servers as close to

users as possible. By placing the clients and the con-
tent servers (storage nodes in our network) in the same
nodes, we can simulate the ideal redirection where all
clients are always redirected to the closest server (the
redirection in this case is static). By studying di�erent
replication strategies we can determine which strate-
gies a CDN should use when deciding which objects to
replicate. Because a CDN has complete knowledge of
its network, we can use strategies which require global
information or cooperation.

2.1 Network Topologies

We downloaded several di�erent �les from
NLANR [12], each describing the AS topology
on a di�erent day. Table 1 shows the di�erent
topologies we used, the number of ASs in each one,
the number of leaf ASs, the average length of the
shortest path between any two nodes, and the average
distance of the shortest path between any two leaf
nodes.
From topologies in Table 1 and other topologies we

downloaded (not shown), we see that the average dis-
tance between nodes tends to increase as the number
of nodes in the network increases. It is also important
to note that these topologies do not contain all of the
ASs in the Internet, but only a subset of them. There-
fore, the full Internet AS topology would likely have a
higher average distance than any of the topologies we
used.

3 Cost Model

We consider a network where the nodes are the au-
tonomous systems (ASs). For simplicity, we assume
that one AS is the same as one ISP. We have I ASs
in the network. AS i, i 2 1; 2; : : : ; I , has Si bytes of
storage capacity and has clients that request objects
at aggregate rate �i.
We have J objects. Object j has a size of bj , j 2

f1; 2; : : : ; Jg and a request probability pj which is the
probability that a client will request this object. We
assume that client request patterns are homogeneous,
i.e., the pj 's are the same for all ASs. But this model
can be extended to include other request patterns by

using pij , which would be the request probability for
object j from AS i.
We have the following variables:

xij =

(
1 if object j is stored at AS i;

0 otherwise:

The storage is constrained by the space available at
AS i, that is

JX
j=1

bjxij � Si i = 1; : : : ; I

The goal is to choose the xij 's so that a given perfor-
mance metric is minimized. In this paper our goal is
to minimize the average number of inter-AS hops that
a request must traverse. This re
ects the download
time of an object to some degree and can thus be used
as an indicator of the user perceived latency.
We denote the matrix of all xij 's by x. Furthermore,

we assume that each object j is initially placed on an
origin server; we denote by Oj the AS that contains
this origin server. We assume that all of the objects are
always available in their origin servers, regardless of
the placement x. We denote the placement of objects
to origin servers as xo. Note that this origin server
placement does not count against the storage capacity
SOj

.
The average number of hops that a request must

traverse from AS i is

Ci(x) =

JX
j=1

pjdij(x) (1)

where dij(x) is the shortest distance to a copy of ob-
ject j from AS i under the placement x. This nearest
copy is either in the origin AS Oj , or in another AS
where the object has been replicated. We assume that
the client is always redirected to the nearest copy. In
this paper we do not consider the mechanisms used to
redirect clients, but instead assume that such a mech-
anism is in place.
Let � =

P
i �i be the total request rate of all ASs.

The average number of hops from all ASs is then

C(x) =
1

�

IX
i=1

�iCi(x)

=
1

�

IX
i=1

JX
j=1

�ipjdij(x)

=
IX
i=1

JX
j=1

sijdij(x) (2)

2



Date

Number of

nodes

Number of

leaf nodes

Average

distance

Avg. leaf

distance

97/12/21 3184 1423 3.76 4.34
99/01/11 549 136 3.40 4.18
99/12/08 767 222 3.03 3.38
99/12/11 1477 502 3.45 4.10

Table 1: AS topologies

where sij = �ipj=�. The placement x is subject to

JX
j=1

bjxij � Si i = 1; : : : ; I

This cost function represents the long term average
cost. For a large number of objects and ASs, it is not
feasible to solve this problem optimally; in fact, as we
show in the next section, this problem is NP-complete.

3.1 Proving NP-Completeness

In order to prove that our optimization problem is NP-
complete, we �rst formulate the problem as a decision
problem. Given a target number of hops T , we ask is
there a placement x such that

IX
i=1

JX
j=1

sijdij(x) � T

subject to

JX
j=1

bjxij � Si i = 1; : : : ; I

We prove the NP-completeness of this problem by
showing that it belongs in NP and then we reduce the
knapsack problem to a special case of our problem.
This proves the NP-completeness.
The problem is easily seen to be in NP. Given a

placement x and number of hops T , we can verify in
polynomial time whether the placement results in an
average cost of less than T hops.
Next, we consider the special case where S1 = S,

Si = 0, i = 2; : : : ; I , �i = �, i = 1; : : : ; I , pj = p,
j = 1; : : : ; J , i.e., we have only one AS on which to
place objects, all ASs have the same request rate, and
all objects are equally popular.
Recall that each object j is always available at the

origin AS Oj . The cost of getting object j for a client
in AS i is dij(xo). Because all clients always go to the
nearest copy, placing copies on the only available AS
can only decrease the cost for any client, i.e., dij(x) �
dij(xo) for all i and j. We de�ne the utility of placing

object j on AS i as u(j) =
P

i[dij(xo) � dij(x)], i.e.,
the decrease in number of hops we would obtain if we
placed object j in the AS.
Given target decrease in number of hops T 0 we now

ask if there is a set of objects J 0 such thatX
j2J0

bj � S and
X
j2J0

u(j) � T 0

This problem is identical to the well-known NP-
complete knapsack problem [6]. Given that our place-
ment problem belongs in NP and that the knapsack
problem reduces to it, we know that our placement
problem is NP-complete.

4 Replication Heuristics

Because our optimization problem is NP-complete,
�nding the optimal solution is not feasible. There-
fore we have designed several heuristics that use the
available information in di�erent ways in order to get
the best results.
In our simulations we use the following heuristics.

1. Random. Assigns objects to storage nodes ran-
domly subject to the storage constraints. We pick
one object with uniform probability and one node
with uniform probability, and we store the object
in that node. If the node already stores that ob-
ject, we pick a new object and a new node. As a
result, an object can be assigned to several nodes,
but a node will have at maximum one copy of an
object.

2. Popularity. Each node stores the most popular
objects among its clients. The node sorts the ob-
jects in decreasing order of popularity and stores
as many objects in this order as the storage con-
straint allows. The node can estimate the popu-
larities by observing the requests it receives form
its clients. This heuristic does not require the
node to get any information from outside of the
node. Note that in our case, the object populari-
ties pj are the same across all nodes, hence all the

3



nodes will store the objects in the same order but
subject to di�erent storage constraints.

3. Greedy-Single. Each node i calculates Cij =
pjdij(xo) for each object j. This represents the
contribution of an individual object to (1) un-
der the initial placement. The node then sorts
the objects in decreasing order of Cij and stores
as many objects in this order as the storage con-
straint allows. The popularities are obtained as in
the Popularity heuristics, but the CDN also needs
information about the network topology in order
to estimate the dij 's. Note that the Cij 's are cal-
culated only once under the placement xo and are
not adjusted when objects are stored. This means
that every node stores objects independently of
all the other nodes and no cooperation between
nodes is required.

4. Greedy-Global The CDN �rst calculates Cij =
�ipjdij(xo) for all nodes i and objects j. Then
the CDN picks the node-object-pair which has the
highest Cij and stores that object in that node.
This results in a new placement x1. Then the
CDN re-calculates the costs Cij under the new
placement and pick the node-object-pair that has
the highest cost. We store that object in that
node and obtain a new placement x2. We iterate
this until all the storage nodes have been �lled.

We do not consider any variants of these base heuris-
tics, such as using popularity divided by object size,
but evaluate only the performance of the base heuris-
tics. Di�erent variants of these heuristics have been
studied in the context of web caching (see [8] and ref-
erences therein) and any such improvements could be
used directly to enhance the performance of our heuris-
tics.

5 Evaluation of Heuristics

We evaluated the performances of our heuristics using
the topologies from Section 2.1. We ran each heuristic
on each topology using di�erent parameters for object
popularity and storage capacity in the nodes.

We assigned the popularities to the objects from
a Zipf-like distribution where we varied the parame-
ter from 0.6 to 1.0. Values between 0.6 and 0.8 have
been typically observed in Web proxy traÆc [2]. Much
higher values, up to 1.4, have also been discovered
in the context of popular Web servers [13]. Object
sizes were randomly drawn from a uniform distribu-
tion. The storage capacity at each node was �xed to
some percentage of the total size of the set of objects.

We varied this percentage in the course of the experi-
ments. All the client nodes had the same request rate
�.

We placed all the content servers at the leafs of the
network, i.e., for all non-leaf ASs we set Si = 0. Even
though this assignment of storage capacity is arti�cial,
it allows us to study the performances of our heuristics
better. By placing all the storage capacity and objects
at the edges, the average number of hops needed to
obtain an object is higher than with a more realistic
assignment. This makes it more important to repli-
cate the right objects and lets us see more clearly the
di�erences between our heuristics.

The baseline for our experiments was the initial
placement xo which we obtained by randomly assign-
ing objects to storage nodes. We compared the per-
formance of each of the heuristics to this baseline and
report the relative performance obtained with each
heuristic. Because the memory requirements for the
experiments grow with the product IJ , we were not
able to run all experiments for all the topologies.

Figure 1 shows the results from experiments with
1000 objects. We only show results for two topologies,
but we observed that the results for the remaining two
were similar to the two shown here. On the x-axis
we plot the amount of storage at a node as percent-
age of the total size of the objects. On the y-axis we
plot the performance relative to the baseline. In each
graph, we plot di�erent curves for di�erent heuristics
and di�erent values of the Zipf-parameter (0.6, and
1.0). Note that we only plot the Random heuristic
with Zipf-parameter 1.0. The performance of the Ran-
dom heuristic was similar for the other Zipf-values.
The curves of the other heuristics for Zipf-values be-
tween 0.6 and 1.0 was between the curves plotted.

From Figure 1 we can see that Greedy-Global is the
best performing heuristic. The second best is Greedy-
Single, followed closely by Popularity. Random heuris-
tic is consistently the worst and does not achieve sub-
stantial reductions in number of hops, even for large
storage capacities. As we mentioned, the performance
of Random did not change much with di�erent Zipf-
parameter values.

As Figure 1 shows, the gains increase logarithmically
with increased storage capacity. The main determin-
ing factor is the Zipf-parameter value. The larger this
value is, the smaller is the number of objects gener-
ating a large amount of requests. Thus, it is easy to
signi�cantly reduce the cost if only a small number
of objects is very popular. To reduce the number of
hops by 50%, we need only a small amount of storage
for parameter 1.0 and up to 25% of total data set for
parameter value 0.6.

In Figure 2 we plot the results from experiments

4



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache size, % of data set

R
el

at
iv

e 
pe

rf
or

m
an

ce

Random − 1.0
Pop. − 0.6  
G−S − 0.6   
G−G − 0.6   
Pop. − 1.0  
G−S − 1.0   
G−G − 1.0   

(a) 99/01/11

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache size, % of data set

R
el

at
iv

e 
pe

rf
or

m
an

ce

Random − 1.0
Pop. − 0.6  
G−S − 0.6   
G−G − 0.6   
Pop. − 1.0  
G−S − 1.0   
G−G − 1.0   

(b) 99/12/08

Figure 1: Experiments with 1,000 objects

with 10,000 objects. Due to memory limitations, we
were not able to run Greedy-Global for all the topolo-
gies, therefore it is not shown on the plots.

The results are very similar to the results from the
previous experiment. Random is still the worst in
terms of performance, but the di�erence between Pop-
ularity and Greedy-Single has decreased. This is be-
cause as the number of objects grows, the individual
object popularities will get smaller. Therefore, the
contribution of an individual object's retrieval cost
to the global cost (2) will get proportionally smaller.
Hence, the popularity of the object becomes more im-
portant in determining the cost. The product of pop-
ularity and distance used by Greedy-Single is still a
slightly better indicator, but the di�erence is minimal.

From our results we can conclude that the best per-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache size, % of data set

R
el

at
iv

e 
pe

rf
or

m
an

ce

Random − 1.0
Pop. − 0.6  
G−S − 0.6   
Pop. − 1.0  
G−S − 1.0   

(a) 99/12/08

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache size, % of data set

R
el

at
iv

e 
pe

rf
or

m
an

ce

Random − 1.0
Pop. − 0.6  
G−S − 0.6   
Pop. − 1.0  
G−S − 1.0   

(b) 99/12/11

Figure 2: Experiments with 10,000 objects

formance is obtained when the object replication is
coordinated by a single source, in our case, this would
be the CDN. The di�erence in performance between
Greedy-Global and the other two heuristics is quite sig-
ni�cant, especially for small Zipf-parameter values. In
Figure 1 we can see that the largest improvements in
performance are up to 24%. This result shows that a
CDN should use a coordinated replication strategy and
not let the CDN servers act on their own.

6 Peer-to-Peer Content Distri-

bution

We now introduce a new form of content distribution,
namely peer-to-peer content distribution. Peer-to-peer

5



networks have recently emerged as a new form of con-
tent distribution and are mainly used to share indi-
vidual �les between users. In peer-to-peer networks,
such as Napster [11], or Gnutella [7], individual users
decide to share �les with others. With the help of a
directory service, users can determine where di�erent
�les can be downloaded from. While this new model
does not directly compete with the traditional Web
browsing model, it is establishing itself as a means for
distributing larger �les, such as applications or mu-
sic, between users. Because peer-to-peer networks are
made up of individual users, we cannot use strategies
which require global information and coordination of
nodes as with CDNs. Instead we must restrict our-
selves to strategies that need only locally available in-
formation; one example of such strategy is the Popu-
larity heuristic.
As before, we assume that one AS in our network

corresponds to one ISP. We can view the storage ca-
pacity in an AS as the aggregation of the peer-to-peer
storage o�ered by the users in that AS. In a similar
vein, xij = 1 means that at least one user in AS i has a
copy of object j. We assume that the cost of retrieving
objects from other users in the same AS is negligible;
this is consistent with our de�nition of retrieval cost in
Section 3. In this section we will investigate the bene-
�ts of cooperation between the users in di�erent ASs.
Our goal is to see if the users in a peer-to-peer net-
work could gain anything from cooperating with other
nearby users.
We will now develop a cooperation model for

peer-to-peer content distribution under the popular-
ity heuristic. For simplicity and ease of notation, we
shall assume throughout this section that all objects
have the same size, i.e., bj = b for j = 1; : : : ; J .
Consider two ASs, A and B. Denote the shortest

path between them by DAB . Let K be the number
of objects that each AS can store. We do not assume
anything about the relationship between the two ASs,
except that the distance between them is DAB. In
particular, we do not assume that one is the access
provider of the other one. We assume that �A = �B .
If both ASs act independently, they would both

cache the K most popular objects and the average
number of hops for requests from A and B would be

�A
�A + �B

JX
j=K+1

pjdAj +
�A

�A + �B

JX
j=K+1

pjdBj

=
1

2

JX
j=K+1

pjdAj +
1

2

JX
j=K+1

pjdBj (3)

We now consider the case where the two ASs co-
operate and do not necessarily both store the same

objects. We assume that both of them store a copy
of the L most popular objects (L � K), and that in
addition A stores objects (L+1); : : : ;K, and B stores
objects (K + 1); : : : ; (2K � L). Because the request
rates are identical, it does not matter how the objects
(L + 1); : : : ; (2K � L) are shared between A and B.
Note that because of the same reason, we only need to
consider replicating objects in A and B and not in the
intermediate nodes.
The average number of hops for requests from A and

B under this scheme is

1

2

2K�LX
j=K+1

pjDAB +
1

2

JX
j=2K�L+1

pjdAj

+
1

2

KX
j=L+1

pjDAB +
1

2

JX
j=2K�L+1

pjdBj

=
1

2

2K�LX
j=L+1

pjDAB +
1

2

JX
j=2K�L+1

(pjdAj + pjdBj) (4)

The di�erence between (3) and (4) is

1

2

2K�LX
j=K+1

(pjdAj + pjdBj)�
1

2

2K�LX
j=L+1

pjDAB (5)

If (5) is greater than zero, then it is better for A
and B to cooperate. By assuming dAj = dBj = davg ,
we can calculate the value of davg where cooperation
becomes the preferred strategy. The equation becomes

1

2

2K�LX
j=K+1

(pjdavg + pjdavg)�
1

2

2K�LX
j=L+1

pjDAB > 0 (6)

Solving for davg , we get

davg >
DAB

2

P2K�L
j=L+1 pjP2K�L
j=K+1

pj
(7)

If (7) holds, then it is better for A and B to cooperate.
Because davg is likely to be reasonably stable over long
intervals and because pj 's are known to both parties,
A and B can use (7) as a quick test to see whether
they could gain anything by cooperating. For the test,
A and B either need to specify the value of L or verify
equation (7) over several values of L.
In the following, we will consider two values for

DAB , namely 1 and 2. If DAB is equal to 1, then A
and B are neighbors. We plotted (5) for several Zipf-
parameter values, average distances davg , and values of
K, and in all cases, cooperation is almost always supe-
rior to a non-cooperating strategy. In some instances,
however, the di�erence between the two is small.

6



5 10 15 20 25 30 35 40 45 50

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Number of shared objects, L

D
iff

er
en

ce
 in

 h
op

s

d
avg

 = 3
d

avg
 = 4

d
avg

 = 5
d

avg
 = 6

(a) Zipf 0.6

5 10 15 20 25 30 35 40 45 50

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Number of shared objects, L

D
iff

er
en

ce
 in

 h
op

s

d
avg

 = 3
d

avg
 = 4

d
avg

 = 5
d

avg
 = 6

(b) Zipf 0.8

Figure 3: Gain from cooperation for K = 50, 1000
objects

In Figure 3 we show typical plots of (5). In these
plots, we have 1,000 objects available and both nodes
have capacity to store 50 objects, or 5% of the data
set. We show two plots for two di�erent values of the
Zipf-distribution parameter. On the x-axis we plot the
value of L, i.e., the number of objects stored at both A
and B, and on the y-axis we show the value of (5), that
is, the di�erence between individual and cooperative
strategies in hops. If the di�erence is positive, then
cooperation is better.

As we can see from the plots in Figure 3, there are
always some values of L for which cooperation gives
better results, but in some cases the gains are small.
We can see that as davg gets smaller, the gains become
smaller. This is no surprise since a small davg means
that the requested objects are typically already very

A

C

B

Figure 4: 3-way cooperation

close and cooperation would not help much. We also
see that as davg increases, the potential gains increase
signi�cantly.

Even though a gain of 0.2 hops may not seem much,
it is important to note that the di�erence between
Popularity heuristic and Greedy-Single was typically
less than 0.05 hops. The di�erence between Popular-
ity and Greedy-Global was 0.1{0.15 hops. Therefore,
two cooperating nodes using the Popularity heuris-
tic would obtain signi�cantly better performance than
they could hope to obtain by acting independently. We
can conclude that cooperation is much more eÆcient
at reducing the cost than changing a heuristic from a
popularity based heuristic into a greedy one.

If DAB is equal to 2, then A and B are separated
by one AS. One example of this case is shown in Fig-
ure 4 where we have three nodes, one parent and two
children. In this case, the cooperation would happen
between the children. Figure 5 shows the graphs for
this case.

Comparing Figures 3 and 5 we can see that the gains
get smaller as DAB increases. When DAB increases
even further, cooperation will no longer be bene�cial to
A and B. This is to be expected, since in the network
topologies we used, the average distance between leaf
nodes was around 4 and therefore the distance between
A and B would be roughly the same as the distance
to the origin server.

We also investigated cases where there are a very
large number of objects in the network. In these cases,
the general form of the gains matches those in Fig-
ures 3 and 5, but the actual gain is slightly lower.
This is because the storage nodes can only hold a very
small fraction of the objects, and even two nodes co-
operating cannot hold enough objects to reduce the
average number of hops signi�cantly. However, even
in these cases, cooperation yielded a smaller average
number of hops than not cooperating. For example,
with 1 million objects and K equal to 2000, the maxi-
mum gain was around 0.2 hops as opposed to 0.27 with
1000 objects and K = 50 (for davg = 6).

7



5 10 15 20 25 30 35 40 45 50
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Number of shared objects, L

D
iff

er
en

ce
 in

 h
op

s

d
avg

 = 3
d

avg
 = 4

d
avg

 = 5
d

avg
 = 6

(a) Zipf 0.6

5 10 15 20 25 30 35 40 45 50
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Number of shared objects, L

D
iff

er
en

ce
 in

 h
op

s

d
avg

 = 3
d

avg
 = 4

d
avg

 = 5
d

avg
 = 6

(b) Zipf 0.8

Figure 5: Gain from cooperation for DAB = 2, K =
50, 1000 objects

7 Related Work

Related work on replicating content has mostly con-
centrated on the problem of placing the replica servers
for one origin server. In this paper we consider a more
global case where we have content from several origin
servers and we decide which objects to replicate on the
replica servers.

In both [10] and [3], the authors consider the prob-
lem of placing replicas for one origin server on a tree
topology. While the real Internet topology is not a
tree, this simpler approach allows the authors to de-
velop optimal algorithms. The tree-approach may not
generalize, because it would require that the trees
for di�erent origin servers overlap at the replica sites

which cannot be guaranteed without a manual selec-
tion of the replica sites. Also, in [10], the algorithm is
of a high computational complexity O(N3M2).

In [14] the authors present their algorithms for plac-
ing server replicas in a CDN. They assume that the
replicas are complete replicas and they do not study
replicating individual objects; in our work we make
replication decisions on a per-object granularity. They
formulate the problem as the NP-complete K-median
problem, develop heuristics and evaluate their perfor-
mance. They only consider placing replicas for a single
origin server; our heuristics replicate objects from all
the origin servers. All of their heuristics require infor-
mation about the network topology as well as client
request loads. Also, in their work, all the replicas act
independently and they do not study any cooperating
schemes.

In [9] the authors consider the placement of inter-
cepting proxies inside the network to reduce the down-
load time. They present optimal solutions for simple
topologies, such as line and ring, and consider the case
of placing proxies for a single server in a tree topology.
Relying on intercepting proxies requires that routing
is stable during the lifetime of the connection.

8 Conclusion

In this paper we have studied the problem of opti-
mally replicating objects in CDN servers. We treat
each AS as a node with �nite capacity for storing ob-
jects. Our optimization problem is to replicate ob-
jects so that when clients fetch objects from the near-
est CDN server, the average number of ASs traversed
is minimized. We have formulated this problem as a
combinatorial optimization problem and have shown
it to be NP complete.

We have developed four natural heuristics and com-
pared them numerically using real Internet topol-
ogy data. Our results show that the best perform-
ing heuristic is Greedy-Global which has all the CDN
servers cooperating. The di�erence in performance be-
tween Greedy-Global and the simpler heuristics was up
to 24%.

We have also studied peer-to-peer content distribu-
tion and developed a model for studying the bene�ts of
cooperation between nodes. Our evaluation of the co-
operation model shows that nodes using simple heuris-
tics and intelligent cooperation can get signi�cant per-
formance gains.

The �eld of content distribution and peer-to-peer
networks has signi�cant potential for future research.
Our future work will look more closely into inter-node
cooperation and investigate the optimization problem

8



more closely in order to establish lower bounds on the
achievable performance. We also plan to extend our
cost model to include other important factors, such as
network traÆc or server load.

Acknowledgements

The routing data summaries used in constructing the
network topologies were provided by National Sci-
ence Foundation Cooperative Agreement No. ANI-
9807479, and the National Laboratory for Applied
Network Research. We would also like to thank Anat
Bremler-Barr of Tel Aviv University for the discussions
about the topology models.

References

[1] Akamai. <http://www.akamai.com>.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and Zipf-like distribu-
tions: Evidence and implications. In Proceedings
of IEEE Infocom, New York, NY, March 21{25,
1999.

[3] I. Cidon, S. Kutten, and R. So�er. Optimal
allocation of electronic content. In Proceedings
of IEEE Infocom, Anchorage, AK, April 22{26,
2001.

[4] Digital Island Inc. <http://www.digisle.net>.

[5] L. Gao. On inferring autonomous system re-
lationships in the internet. In Proceedings of
IEEE Global Internet, San Francisco, CA, Novem-
ber 28{30, 2000.

[6] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[7] Gnutella web site.
<http://www.gnutella.co.uk/>.

[8] S. Jin and A. Bestavros. GreedyDual* web
caching algorithm: Exploiting the two sources of
temporal locality in web request streams. In Pro-
ceedings of 5th Web Caching and Content Distri-
bution Workshop, Lisbon, Portugal, May 22{24,
2000.

[9] P. Krishnan, D. Raz, and Y. Shavitt. The cache
location problem. IEEE/ACM Transactions on
Networking, 8(5):568{582, October 2000.

[10] B. Li, M. J. Golin, G. F. Italiano, and X. Deng.
On the optimal placement of web proxies in the
internet. In Proceedings of IEEE Infocom, New
York, NY, March 21{25, 1999.

[11] Napster. <http://www.napster.com>.

[12] NLANR measurement and operations analysis
team. <http://moat.nlanr.net>.

[13] V. N. Padmanabhan and L. Qiu. The content and
access dynamics of a busy web site: Findings and
implications. In Proceedings of ACM SIGCOMM,
Stockholm, Sweden, August 28 { September 1,
2000.

[14] L. Qiu, V. N. Padmanabhan, and G. M. Voelker.
On the placement of web server replicas. In
Proceedings of IEEE Infocom, Anchorage, AK,
April 22{26, 2001.

[15] Route views project homepage.
<http://www.antc.uoregon.edu/route-views/>.

9


