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Abstract— This paper presents a model and theory for streaming lay-
ered video. We model the bandwidth available to the streaming application
as a stochastic process whose statistical characteristics are unknown a pri-
ori. The random bandwidth models short term variations due to congestion
control (such as TCP-friendly conformance). We suppose that the video has
been encoded into a base and an enhancement layer, and that to decode the
enhancement layer the base layer has to be available to the client. We make
the natural assumption that the client has abundant local storage and at-
tempts to prefetch as much of the video as possible during playback. At
any instant of time, starvation or partial starvation can occur at the client
in either of the two layers. During periods of starvation, the client applies
video error concealment to hide the loss. We study the dynamic allocation
of the available bandwidth to the two layers in order to minimize the im-
pact of client starvation. For the case of an infinitely-long video, we find
that the optimal policy takes on a surprisingly simple and static form. For
finite-length videos, the optimal policy is a simple static policy when the en-
hancement layer is deemed at least as important as the base layer. When
the base layer is more important, we design a threshold policy heuristic
which switches between two static policies. We provide numerical results
that compare the performance of no-prefetching, static and threshold poli-
cies.

I. INTRODUCTION

Occupying more than 75% of today’s Internet backbone traf-
fic [1], the Web has become the Internet’s killer application. The
on-demand and highly-graphical nature of the Web are at the
heart of its popularity and bandwidth consumption. In recent
years, streaming stored video has become a popular Internet ap-
plication [2–5]. We expect the traffic emerging from stream-
ing stored video to be a major, if not dominant, Internet traffic
type in the upcoming years because (i) like the Web, it is an
intrinsically appealing application, (ii) each video stream gener-
ates a relatively large amount of traffic, and (iii) increased de-
ployment of high-speed residential access networks (e.g., cable
modems and ADSL) will permit a greater number of users to
stream video at high rates.

One major technological trend that should be taken into ac-
count in the design of streaming stored video applications is the
phenomenal increase of disk capacity at local client machines.
Today, standard PCs are being sold with tens of gigabytes, and
if the current growth trend continues they may be sold with hun-
dreds of gigabytes in upcoming years. This immense local stor-
age capacity fully opens the door to prefetching video during
client playback. In particular, during playback, future portions
of the video can be downloaded to the client’s disk with virtually
no limit on the amount of video that is prefetched.

The Internet itself also has three characteristics that need to
be taken into account when designing video streaming applica-
tions. First, the Internet provides its users with highly heteroge-
neous access rates. Second, the traffic load over a link can wildly
fluctuate over a broad range of time scales [6]. And third, cur-

rently the dominant traffic type is TCP, which has been designed
to share bandwidth with other traffic flows by appropriately lim-
iting its transmission rate. The first two characteristics strongly
suggest the use of an adaptive transmission scheme at the server,
such as transmission of layered-encoded video. The third char-
acteristic suggests that streaming video should be designed to
cooperate fairly with existing TCP flows.

In this paper we develop a model that provides a framework
for high-level design of streaming stored video applications. We
develop the model in the current context of abundant local stor-
age, heterogeneous user access rates, fluctuating traffic load on
links, and the need for the application to conform to a congestion
control mechanism (such as TCP-friendly conformance). Given
that there is abundant local storage, we naturally allow for lim-
itless prefetching during client playback. Our theory permits
the video to be VBR-encoded, although the results remain in-
sightful for the special case of CBR video. The model supposes
that the bandwidth available to the video streaming application
is variable; it could, for example, be the fair-share bandwidth
determined by a TCP-friendly algorithm [7–9].

We also suppose that the video is layered encoded. Layered
encoding is useful in order to cope with the heterogeneity of user
access rates and with the competing traffic in the links between
server and client. In this paper we suppose that the video is en-
coded in two layers – a base layer and an enhancement layer.
At any instant of time, starvation can occur at the client in ei-
ther of the two layers. During periods of starvation, the client
applies video error concealment to hide the loss [10]. The fun-
damental problem that we address in this paper is the dynamic
allocation of the available bandwidth to the two layers in order
to minimize the impact of client starvation. A conservative pol-
icy allocates all the available bandwidth to the base layer until
the entire base layer has been prefetched (at which the available
bandwidth is allocated to the enhancement layer); a more ag-
gressive, optimistic policy is to allocate the available bandwidth
in proportion to the average consumption rates of the layers. The
problem of dynamically allocating bandwidth among the lay-
ers can be formulated as an adaptive stochastic control problem
[11]. The fraction of bandwidth allocated to a layer can depend
on a number of observable factors, including the current and
past available bandwidth, the current prefetch buffer contents,
and the dynamic consumption rates of the videos. However, the
statistical characteristics of the available bandwidth (e.g., mean
and variance) are not given a priori to the client-server system.

We study this dynamic allocation problem for two cases: the
case of an infinite-length video, which approximates the impor-
tant case of a long video with limited or no user repositioning(as



would be the case in a movie); and the finite video case, which
models the case of a shorter video clip. For the infinite video
case we find that the optimal policy is surprisingly simple. It
is a static policy that allocates a constant fraction of the band-
width to each layer throughout the transmission of the video.
Although making extensive use of prefetching, static policies
do not need to take into account current prefetch buffer con-
tents. For the finite video case, we find that the nature of the
optimal policy depends on the relative importance of the various
layers. When the enhancement layer is deemed as important as
the base layer, then the optimal policy is shown to be a spe-
cific static policy. However, when the base layer is relatively
more important, then static policies are suboptimal and, in fact,
can perform poorly. For this important case, we devise a sim-
ple heuristic which switches between two static policies when
the base-layer prefetch buffer exceeds a threshold. We provide
numerical results which show that threshold policies can pro-
vide significantly better performance than static policies. The
numerical results also illustrate the importance of prefetching.

The findings of this paper indicate that substantial gains in
performance are possible when layered video is prefetched into
client buffers. When a video is very long and there is minimal
user repositioning (as is typically the case for a movie), then our
results indicate that a simple static allocation policy provides
nearly optimal performance. Our proposed threshold policy is
appropriate for shorter video clips, or for video sessions with
significant user interactivity.

The paper is organized as follows. In Section 2 we provide
further motivation for streaming layered-video and prefetching.
In Section 3 we precisely define the model. In Section 4 we
define and solve the problem of optimally allocating available
bandwidth to the base and enhancement layers for infinitely-
long video. In Section 5 we study a similar problem for finite-
length video. We develop heuristics for the finite-length case
and provide simulation results in Section 6.

II. STREAMING STORED VIDEO

One fundamental property of stored video, as mentioned in
the Introduction and observed in many other papers [12–18],
is that it is prefetchable. Prefetching is advantageous for at
least three reasons. First, it allows the client to locally build
up a reservoir in preparation for future bandwidth droughts.
Droughts can occur over short time scales due to bursty Web
requests, congestion avoidance in competing TCPs, and the
variable-bit rate transmissions in competing video streams.
Bandwidth droughts can also occur on longer time scales due to
changes in the number of competing streams and Web surfers,
and due to route changes. A second motivation for prefetching is
that when the video stream is variable-bit-rate (VBR) encoded,
then future high-bit rate scenes can be prefetched when there
is excess available bandwidth. Finally, a third motivation is to
reduce (or eliminate) the re-buffering delay when the user repo-
sitions playback at a point into the future.

A second property of video is that it is loss (i.e., starvation)
tolerant. Sender-side (e.g., FEC) and receiver-side (e.g., block
repetition, prediction, interpolation) [10] techniques can be used
to reduce the visual effects of loss. A third property of video
is that it is often VBR encoded. This implies that the rate at
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Fig. 1. Layered encoding and decoding of video.

which the video data is drained at the client fluctuates over many
different time scales. However, because the video is prerecorded
and stored, the rate fluctuations are known a priori to the server.

When designing an application for streaming stored video,
we must also take into account the nature of the Internet. Ac-
cess rates to the Internet vary by several orders of magnitude.
Many users are restricted to dial-up modem rates of 56 Kbps or
less, whereas other users have 100 Mbps Ethernet access. Fur-
thermore, the competing network traffic load between server and
client can widely fluctuate over many different time scales.

These two Internet characteristics – heterogeneous access
rates and fluctuating network traffic – motivate the use of lay-
ered encoding. With two layers, it may be possible to quickly
prefetch the base layer so that it is immediately available after
user repositioning. With layered encoded video, when the long-
term average available bandwidth is insufficient to support all
the layers, the server does not transmit higher layers, which re-
sults in lower but often acceptable quality for the user. A critical
property of layered encoding is that in order to decode a layer,
all the lower layers must also be present at the client.

Fig. 1 illustrates how video is typically encoded into two lay-
ers. First the video is compressed into a base layer. Next, the
base layer is de-compressed and subtracted from the original un-
compressed video. This difference is then compressed to form
the enhancement layer. At the receiver, the layers are indepen-
dently de-compressed and then added together. If packet loss
occurs for either layer, the client can attempt to conceal the loss
using, for example, block repetition, prediction and interpola-
tion.

Another important characteristic of today’s Internet is that
dominant traffic types (HTTP, SMTP, NNTP, etc.) run over TCP.
TCP uses a congestion control mechanism that forces connec-
tions to exhibit fair behavior [19]. Streaming video applications
should be designed to be cooperative with the TCP connections
by reacting to congestion [20]. This can be done, for example,
by probing to discover the fair-share of network bandwidth and
transmit at a rate that does not exceed this fair share. Applica-
tions with this property are said to be “TCP friendly” [7, 8]. An
application’s fair share rate can be estimated by its round-trip



times and its loss rates [7–9].

A. Related Research

Rejaie et al [21, 22] consider a broad range of architectural
issues for streaming layered encoded video. They argue for
the need for end-to-end congestion control, quality adaptation
and error control for streaming applications. Their analysis as-
sumes that (1) the congestion control mechanism employs an
additive increase multiplicative decrease (AIMD) algorithm, (2)
the video is encoded in many layers, (3) the encoding is CBR.
Furthermore, they do not account for error concealment at the
receiver, so a complete layer must be available at the receiver
to make use of it. In the context of these assumptions, they de-
velop buffer allocation mechanisms that meet natural QoS goals.
Although our paper is similar in spirit to [22], the model and
the approach differs in many respects. Our model allows for
(1) a general evolution of the available bandwidth (rather than
one based on the AIMD algorithm), (2) partial loss and error
concealment at the receiver, and (3) VBR as well as CBR en-
coded video. Our approach also differs in that we formulate the
problem as an optimal stochastic control problem, and study the
problem for both long and short videos. Our goal is to gain fun-
damental insight into the streaming of layered video in a broad
context.

Podolsky et al [23] also formulate an interesting optimization
problem for streaming layered video. In their model, the band-
width between server and client is constant, but packets are inde-
pendently lost with a constant probability. They do not explicitly
consider extensive client prefetching nor TCP-compliant trans-
mission schedules. Their focus is on optimal retransmission of
lost packets from the different layers.

III. THE MODEL

Video is stored in a server and is to be streamed across the
Internet to a client. Let the length (in seconds) of the video
be denoted by

�
. We suppose that the video is VBR layered-

encoded into a base layer and an enhancement layer. Although
we allow for VBR encoding of each layer, the theory developed
here remains insightful for the case of CBR-encoded video. To
simplify the notation, we use a fluid model to represent the
streaming of the encoded video. (This theory can be converted
to its discrete equivalent without significant modification.) Let�������	� denote the encoded rate of the base layer � seconds into the
video; similarly define ��
���	� for the enhancement layer.

Without loss of generality, we suppose that the client begins
to playback the video at time ����� . Initially, we exclude in-
teractive actions such as pause/resume and repositioning. Thus
at time � the client desires to consume base layer video at rate�������	� and enhancement layer video at rate ��
���	� . To remove jit-
ter and short time scale bandwidth variations, most streaming
systems build up a few seconds of video before playback [2, 3].
Our model also allows for an initial playback delay, denoted by�

. Since playback begins at time ����� , a playback delay of
�

seconds means that the client requests the video at time ����� �
.

Throughout this paper, we suppose that
�

is a fixed parameter
(e.g., four seconds). We make the approximation that the delay
between the server and the client is zero; this is a reasonable
approximation since RTTs are relatively small.
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Fig. 2. Allocating the available bandwidth to the two layers.

Let , ���	� , � �.- � , be the rate available to the stream at time� . The server might determine the rate , ���	� , for example, from
RTTs and packet loss rates using one of the TCP-friendly pro-
cedures [7–9]. The available bandwidth , ���	� can vary on short
time scales due to competing Web transfers, competing VBR
streams, and competing TCPs using congestion avoidance; it
can also vary on long time scales due to changes in the number
of streams and users, and due to route changes. At time � the
server knows the current available bandwidth , ���	� and its past
values, but has no knowledge of its future values (although it
can try to predict them from the current and past values). We
view /�, ���	��0"�21�� �43

as a stochastic process.
We suppose that the server always transmits at the rate al-

lowed by the available bandwidth. When the available band-
width exceeds the aggregate consumption rate, the system is
prefetching into the client storage, which we model as infinite.
We also suppose that the server never transmits data that have
already missed their deadline for timely consumption. Thus at
time � the server transmits video at rate , ���	� , and all of the
transmitted video will eventually be consumed by the client.

At each time instant � the server must allocate the avail-
able bandwidth , ��	� among the base and enhancement lay-
ers. Let 5 ����	� and 5 
���	� denote the fraction of , ���	� that the
server allocates to the base and enhancement layers, respec-
tively. Of course, 5 �6���	�27 5 
6���	�8�:9 for all � . We refer to5 ��� 5 �����	��0"�;1<� � � as the streaming policy. As shown in Fig-
ure 2, at time � the base-layer prefetch buffer in the client is fed
at rate 5 ����	� , ���	� and, when nonempty, is drained at rate �6�����	� .
An analogous statement is true for the enhancement layer. Note
that the client prefetch buffers comprise a system of two fluid
queues whose occupancy depends on , ��	� and the prefetch pol-
icy 5 .

Throughout this paper we suppose that the server is aware of
the amount of data in the prefetch buffers. In practice, the server
could accurately estimate the buffer contents from receiver re-
ports. For example, if the the server receives a report stating that
at time � the contents are = � ���	� and = 
 ���	� , then it can estimate
the contents at time �>7@? as

= ����>7A?��CB = �����	�D7FE �$GIH
J(K �ML 5 ��� N�� , � N��O�F�����$N6� P$QRNTS

We consider prefetch policies in a general sense. The policy
allocation 5 ����	� can depend on � , on , ���	� and its entire past his-
tory , � N���0	NVUW� , and on the past policy allocations 5 � � N���0	NXUF� .
Because = ����	� and = 
����	� are uniquely defined by , �$N6�Y0�N - �
and 5 ���$N6�Y0�N - � , the policy can depend on the current and past
prefetch buffer contents as well. However, we make the natural
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Fig. 3. Rendering rate of VBR-encoded video

assumption that there is no a priori statistical characterization of/�, ��	�Y0 ��1�� �43
available.

Ideally, all of the base and enhancement layers are consumed
throughout playback, i.e., the encoded video is sent to the client
decoder at rate ������	�C7��6
���	� for all � - � - �

. Due to lim-
ited and fluctuating available bandwidth, however, it may not be
possible to deliver all data to the client decoder by their dead-
line. An example of how the consumption of compressed video
might evolve over time is shown in Figure 3. In this example,
only the base layer is available to the client up to time ��� ; during
this period, all of the enhancement layer is lost. From time � � to
time ��� both layers are available to the decoder; there is no loss
in either layer. Between time � � and ��� all of the enhancement
layer is lost and for a small period of time only much of the base
layer is lost.

Our goal is to identify the policies that minimize the loss in
the base and enhancement layers. A low-risk policy would be
to allocate all the available bandwidth to the base layer until the
entire base layer has been prefetched, i.e., set 5 �����	��� 9 until
the entire base layer is prefetched. We might apply the low-risk
policy when we are pessimistic about the available bandwidth in
the future. (Also, by prefetching the entire base layer, the base
layer is always immediately available even after repositioning.)
At the other extreme, a risky, optimistic policy is to allocate the
available bandwidth in proportion to the average consumption
rates of the layers.

IV. INFINITE-LENGTH VIDEO

We first study the dynamic bandwidth allocation problem
among layers for infinite-length video. The infinite-length case
approximates the streaming of a full-length movie for which

�
is very large. Let ���� denote the average encoding rate of the base
layer, that is,

�� � �������� �"! 9� E �
# � � ���	� Q���S

Similarly, define �� 
 to be the average encoding rate of the en-
hancement layer. For the infinite video case, we assume that/�, ��	�Y0 �+1 � �43

is a stationary and ergodic stochastic process.
Let $ � E L , ��	� P denote the (a priori unknown) average avail-
able bandwidth.

A. Loss Rates

Loss of data from the base layer can occur only when = �����	�O�� and 5 � ���	� , ���	�WU � � ��	� . We make the natural assumption

throughout this paper that when these two conditions occur, the
data resulting from 5 � ���	� , ��	� can be used to approximate the
decoded video stream. (This could be done, for example, by
using an error concealment scheme such as replacing missing
blocks of video with blocks from earlier frames.) The rate at
which loss occurs when = �6���	�C��� is L �������	� � 5 �����	� , ���	� P G . Thus
the long-run fraction of base-layer traffic lost is

% '� �������� �"!
& �# L � � ��	�D� 5 � ���	� , ��	� P G(' � = � ��	�C����� Q �& �# �Y�����	� Q�� S

% '� should be interpreted as the long-run fraction of the com-
pressed video that is not consumed at the client. In a similar
manner we define ) '
 to be the long-run fraction of enhance-
ment traffic lost:

) '
 �*������ �"!
& �# L ��
6���	� � 5 
����	� , ���	� P G(' � = 
���	�C�<�T� Q �& �# � 
 ���	� Q�� S

) '
 is not an appropriate measure for the fraction of enhance-
ment traffic that is effectively lost from the video stream. Recall
that a critical property of layered video is that to decode the en-
hancement layer, the base layer must be available at the client.
As a result, there is loss of enhancement traffic whenever there
is loss of traffic from the base layer, even if = 
����	�,+ � . We
first suppose that when there is “partial loss” of base-layer traf-
fic, there is also “partial loss” of enhancement-layer traffic. In
this partial-loss model, the fraction of encoded enhancement-
layer traffic that is consumed can be as much as the fraction of
encoded base-layer traffic consumed. This model would be ap-
propriate when many of the available blocks in the enhancement
layer of a frame are blocks available in the base layer of the same
frame. Note that the fraction of base-layer traffic that is con-
sumed during base-layer loss is 5 �6���	� , ��	��-��������	� . The partial-
loss model supposes that an equal fraction of enhancement-layer
traffic is consumed in the case when = 
 ���	�.+ � and there is loss
of base-layer traffic. Thus, in that case, enhancement-layer traf-
fic is consumed at rate ��
���	�0/ 5 �����	� , ���	��-T�Y�T���	� . More generally,
we define the long-run fraction of enhancement-layer traffic ef-
fectively lost as

% '
 ��������1�2!
& �# L � 
 ��	�D�43A���	� P G Q �& �# � 
 ��	� Q � 0 (1)

where 3A���	� is the consumption rate of enhancement-layer traffic
at time � , i.e.,

3A��	�C�
566667 66668
�6
6���	� when = �6���	�(+ � , = 
6��	�(+ �
5 
 ���	� , ��	� when = � ���	�(+ � , = 
 ���	�O�<�� 
 ���	� ' !��#�$��)*���$�%&!���� � when = � ���	�O�<� , = 
 ��	�(+ �
�9��: /�5 
6���	� , ��	�Y0���
���	� ' ! ��� ��)+�#�$�% ! ���$� 3

otherwise.

(2)

B. Feasible Region

Having defined the loss probabilities
% '� and

% '
 , we now
identify the set of possible � % '� 0 % '
 � values. We show that
the loss probability tuple � % '� 0 % '
 � belongs to a feasible set ; ,
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Fig. 4. Set of feasible loss probabilities

where ; is the set of all tuples � % ��0 % 
�� that satisfy% 
21 % � (3)������&9;� % �	� 7 ��6
6�&9;� % 
	� - $ (4)% �;1 L 9;� $���� P G (5)

The feasible set ; is shown in Figure 4. Note that region �
represents an upper bound on the performance level that can be
achieved. The inequality (3) follows directly from the defini-
tions of

%V'� and
% '
 . To prove (4), let

% '� ��	� be the fraction of
base-layer traffic lost over L � 0 �"P for a general prefetch policy 5 .
Similarly, define ) '
 ��	� for the enhancement layer. The amount
of base-layer traffic that has been consumed up to time � is the
amount of traffic that has been delivered to the client up to time� minus the amount of traffic that remains in the client prefetch
buffer at time � . Thus, we have

9;� % '� ��	�C� & �
��� 5 � �$N6� , �$N6� QRN � = '� ��	�& �# �����$N6� QRN

� �� & �
��� 5 � � N�� , �$N6� QRN*� �� = '� ��	��� & �# �Y�6�$N6� QRN

Similarly,

9O� ) '
 ���	�C� �� & �
��� 5 
 �$N6� , �$N6� QRN*� �� = '
 ���	��� & �# �6
�� N�� QRN

Combining the above two equations and using 5 � ���	�67 5 
 ��	�C� 9
gives9� E �

# ����� N��(QRN L 9;� % '� ��	� P 7 9� E �
# ��
6�$N6�&QRN L 9;� ) '
 ��	� P

� 9� E �
��� , �$N6�&QRN*� 9� L = '� ���	� 7 = '
 ��	� P S

Taking the limit of the both sides of the above equation gives

�� � �(9;� % '� � 7 �� 
 �&9;� ) '
 �C� $ S

The proof of (4) is completed by noting that by definition% '
 1 ) '
 . Relationship (5) follows from a similar argument
and noting that

% '� is minimized by setting 5 � ���	�C� 9 for all � .
Having shown that all tuples � % '� 0 % '
 � belong to ; , which

tuples in this region provide the best performance? The answer
to this question depends on the relative importance of the base
and enhancement layers, which in turn depends on the specific
compression and error concealment schemes employed. It may
be desirable to trade off small increases in base-layer loss for
large decreases in effective enhancement layer loss, thereby im-
proving overall image quality. In any case, tuples falling on
� dominate tuples falling in ; � � : for any point belonging to; � � , there exists points on � that provide strictly better perfor-
mance. We therefore say that a policy 5 is optimal if � % '� 0 %V'
 �
belongs to � . In the following subsection we show that a very
simple class of policies can achieve all the points on � , attaining
thereby optimal performance.

C. Optimality of Static Policies

In this subsection we consider a specific class of policies for
which the allocation 5 � ���	� is constant. Let � � , � - � � - 9 ,
denote such a static policy. In the static allocation scheme, a
constant fraction of the available bandwidth is allocated to each
layer throughout the video transmission. Thus, the base-layer
prefetch buffer is fed at rate � � , ��	� and the enhancement-layer
prefetch buffer is fed at rate � 
 , ��	� , where � � 7 � 
 �.9 . Fur-
thermore, define �� � �%&!�% ! G �% � . Intuitively, the static policy �� al-
locates transmission rate to each layer in proportion to its long-
run average consumption rate. A static policy is relatively easy
to implement as it does not depend on prefetch buffer contents.
The following theorem presents our first main result, namely,
static policies are optimal for the infinite-video case. For this
theorem, we assume that �������	�;� � �6
����	� for some constant � ;
this assumption trivially holds for the CBR case and is likely to
roughly hold for the VBR case.

Theorem 1: Each point on the dominating region � is
achieved by some static policy with �� - � � - � ��: / 9T0 �% !! 3

.
Proof: Note that � is the boundary of feasible set ; attained
when (4) is binding (i.e., when it holds as an equality). By an
argument similar to that in the proof of (4), it can be shown that

%#"� � L 9C� � � $��Y� P G 0 (6)

and similarly,

) "
 � L 9;� � 
 $�� 
 P G S (7)

It follows from the above two equations and from � � 7 � 
2� 9
that

% "� and ) "
 satisfy

�� � �&9;� % "� � 7 �� 
 �&9;� ) "
 �C� $ S (8)

Furthermore, it follows from (6) that as � � varies from 9 to
�� ,
% "� varies from L 9�� !�%&! P G to 9 � !

�%&!"G �%&� , where the last
two values are the

% � values at the endpoints of � . Thus, to
prove that all points on � are attained by static prefetch poli-
cies with �� - � � - � ��: / 9�0$�%&!! 3

, it suffices to show that for
this set of policies (4) is binding. Equation (8) implies that this



is clearly the case when
% "
 � ) "
 . To complete the proof of

the theorem it thus suffices to show that for static policies with
�� - � � - �9��: / 9T0 �%&!! 3

% "
 � ) "
 (9)

Fix a realization /�� ���	�Y0 � 1 � �43
of stochastic process , ���	� .

Additionally, fix realizations /�� � ���	��0"� 1 � �43
and /�� 
 ���	��0"� 1� �43

of the prefetch buffer content functions = �6���	� and = 
 ���	� ,
respectively. First, we define the normalized buffer content
functions as �� ����	� � � �����	� - ���� and �� 
T���	� � � 
���	��- ���
 . Taking
derivatives of �� � ��	� and �� 
 ���	� we obtain

�� �� ���	�C� 57 8 " !�� ���$� � % ! ���$��%&! when �� ����	�(+ �� " ! � ���$� � %&!(���$�
�% ! � G when �� � ��	�C��� (10)

and

�� �
 ��	�C� 57 8 " �	� ���$� � % � ��� ��% � when �� 
���	�(+ �� " � � ���$� � %&����� �
�%&� � G when �� 
 ��	�C�<� (11)

By condition � � 1 �� and by noting that � � ���	�O� � � 
 ��	� implies������ � ���
 , we obtain

� � � ��	� �A�Y�����	�
�� � 1 � 
 � ��	�D� �6
����	�

�� 
 for all ��S (12)

We first claim that�� 
 ���	�(+ � implies �� �� ��	�;1 �� �
 ���	�YS (13)

To see this, note that �� 
����	�.+ � implies

�� �
 ���	� � � 
 � ��	�D� � 
 ���	�
��6
- � � � ��	� �A�Y�����	�
���� 0 (14)

where the equality follows from (11) and the inequality follows
from (12). Also from (10) we have

�� �� ��	�;1 � � � ��	�D�F� � ���	�
���� S (15)

Combining (14) and (15) we establish (13). We now prove that� �����	� �<� implies � 
����	�O�<� S (16)

It suffices to show that�� ����	�O1 �� 
���	� for all ��S (17)

Fix a ��1<� . Clearly, (17) is true when �� 
 ���	�C��� . Now suppose
that �� 
 ���	� + � . Then � belongs to a busy period of �� 
����	� . Let
 denote the starting time of the busy period of �� 
����	� ; we have�� 
��	
 � � � . Furthermore �� ����
 �V1 � . Thus at the beginning of
the busy period, �� � ��
 ��1 �� 
 �	
 � . For all N within the busy period�� �� �$N6�;1 �� �
 �$N6� by (13). These two facts imply that �� ���$N6�;1 �� 
��$N6�
for all N in the busy period, and in particular �� �����	�81 �� 
 ���	� ,
which establishes (17), and in turn implies (16).

We now complete the proof of (9). Recall that
% "
 is in gen-

eral given by (1) and (2). By applying (16), (2) becomes

3A���	� �� � 
 ���	� when = 
 ���	�(+ �
� 
 , ���	� when = 
 ���	�C��� (18)

Note that for the case when = � ��	�C� = 
 ��	�C�<� in (2), condition
� �21 �� implies that � 
 - �6
6���	�0/ � ��-�������	� , and 3A���	� reduces to
� 
 , ��	� . Using (18) in (1) yields

% "
 � ) "

Theorem 1 indicates that optimal performance is achieved

by a static policy. The specific optimal policy � � �
L �� 0 � ��: / 9�0 �% !! 3 P , however, depends on the relative importance
of the base and enhancement layers. As an example, sup-
pose that user perceived quality is maximized by making

% '�
as small as possible. In that case, the optimal policy is to set
� � � � ��: / 9�0 �����- $ 3

. To implement this policy, the server does
not need to keep track of the prefetch buffer contents. The server
must, however, have an estimate of the average available band-
width $ . At any time � , such an estimate can be based on the
current available bandwidth , ���	� and all its past values. For
example, the server can dynamically estimate $ at time � as fol-
lows:

$ � & �
����� ��� ��� � J � , �$N6� QRN& �
����� ��� ��� � J � QRN 0 (19)

for some damping factor � . Given the most recent estimate for $
, the server can then adjust the optimal value of � � . Note, finally,
that in the case when $ exceeds the total average consumption
rate �� � 7 �� 
 , then a reasonable policy is � � � �� , regardless of
the relative importance of the layers.

D. Total Loss Model

Our analysis of the bandwidth allocation problem for the case
of infinite-length video in the previous subsections has been
based on the assumption that during instants of base-layer traffic
loss, an equal fraction of enhancement-layer traffic is lost, even
if = 
 ��	� + � . We referred to the above as the partial-loss model.
We now consider a second model for enhancement-layer loss in
which no encoded enhancement-layer traffic can be consumed
when there is loss of encoded base-layer traffic. We refer to this
model as the total-loss model. Note that this model still permits
partial decoding of the enhancement layer when all of the base
layer is available. In this subsection we determine the loss rates
and the optimal streaming policy for this second model. In the
total-loss model, enhancement-layer traffic is lost at rate � 
 ���	�
when = � ���	�*� � and 5 � ���	� , ��	� U � � ���	� . The long-run fraction
of enhancement-layer traffic that is effectively lost is given by
(1), where the effective consumption rate 3@���	� when = � ���	�(+<�
or � � ���	� - 5 � ��	� , ���	� is given by

3A���	�O� � �6
���	� if = 
 ���	�(+ �
5 
 ��	� , ���	� if = 
 ���	�C���

and by 3@���	�C��� , when = �����	�O�<� and �������	�.+ 5 ����	� , ���	� .
Let � 
 denote the long-run fraction of enhancement-layer

traffic lost for the total-loss model. Naturally, the optimal pol-
icy will favor more the base layer, as 100% of enhancement-
layer traffic is lost even if only a small fraction of traffic is lost



from the base layer. As with the partial-loss model, the opti-
mal streaming policy must ensure that the enhancement-layer
prefetch buffer is empty whenever there is loss in the base layer.
Additionally, due to the total-loss assumption, no enhancement
traffic should be streamed during times when there is loss in
the base layer. Using the techniques of subsection IV-B, it
can be shown that the tuple � % � 0 � 
 � belongs to the feasible
set ; as defined by equations (3)-(5). Now consider policy5 " � � 5 "� ���	�Y0 ��1�� � � , which we define as follows:

5 "� ��	�C� � � � if = ����	�(+ � or �������	� - � � , ��	�� ��: / 9�0 %&! ���$�)+��� � 3 otherwise.

Policy 5 " allocates a constant fraction � � of the bandwidth to
the base layer when either = �����	�.+ � or when the current alloca-
tion exceeds the current consumption rate. When the base-layer
prefetch buffer is empty, policy 5 " may increase the fraction of
bandwidth allocated to the base layer to avoid loss of base-layer
traffic. This is done by either allocating to the base layer a frac-
tion of the available bandwidth equal to

%&!(���$�)*���$� if � � ���	� - , ��	� ,
or by allocating to the base-layer all of the available bandwidth
if �Y�6���	� + , ���	� . In the former case, the allocation avoids base-
layer loss, but does not prefetch any enhancement-layer traffic.
Note that policy 5 " allocates no bandwidth to the enhancement
layer unless = �����	� + � . It can be shown in a manner similar
to the proof of Theorem 1, that under policy 5 " with � � + �� ,= � ��	�+� � implies = 
 ���	�+� � . This relationship in turn implies
that � % � 0 � 
 � tuples for policy 5 " with � � + �� belong to region
� , as indicated in Figure 4, i.e.,

�� � �&9 � % � �D7 �� 
 �&9;� � 
 �C� $
The above relationship can be shown again by using similar ar-
guments as in the proof of Theorem 1. Consequently, � % � 0 � 
 �
tuples for policies 5 " with � � + �� dominate all other points in; , thereby achieving optimality.

V. FINITE-LENGTH VIDEO

In this section we consider the layered prefetching problem
for the case of finite-length video. The finite-length case models
the situation in which a short clip (i.e.,

�
is relatively small) is

to be streamed from server to client. In this analysis, we again
consider VBR-encoded video, although our results remain valid
for the special case of CBR-encoded video.

Recall that 5 � � 5 �����	��0"�;1<� � � denotes a general streaming
policy, where 5 �����	� is the fraction of , ���	� allocated to the base
layer at time � and 5 
 ���	�;� 9 � 5 � ���	� is the fraction of , ��	� al-
located to the enhancement layer. For the finite-length case, we
need to restrict the general streaming policy 5 so that as soon as
the streaming of a layer is complete, the total available transmis-
sion rate is allocated to the layer for which data remains to be
sent. To this purpose, we define parameters

� � and
� 
 that indi-

cate the times at which the streaming of each layer is complete.
At

� � , for instance, the portion of base-layer data that remains to
be consumed up through time

�
has been downloaded into the

prefetch buffer. Specifically, we define� � � � ��: / ��� = � ���	�C��E �
� � � �$N6� QRN 3 S

We define an analogous expression for
� 
 . Note that in

the finite-length case, the bandwidth that is available between����� / � � 0 � 
 3 and
�

is not utilized. Let
% '� be the fraction of

base-layer traffic lost. Furthermore, let
�

min
� � ��: / � ��0 � 
 3 .% '� is given by

% '� � & �# L � � ���	�D�43 � ��	� P G Q �& �# �������	� Q�� 0 where

3 �����	�O�
567 68 5 � ���	� , ���	� when = � ���	�O� � for �2U �

min, ���	� when = � ���	�O� � for
�

min
- � - � ��������	� otherwise.

Similarly,

) '
 � & �# L �6
6���	�D�43�
6���	� P G Q �& �# � 
 ��	� Q � 0 where

3�
6���	�C�
567 68 5 
 ���	� , ���	� when = 
 ��	�C��� for �;U �

min, ��	� when = 
���	�C��� for
�

min
- � - � 
� 
 ���	� otherwise.

Clearly, loss of base-layer traffic is only possible for � - � � .
Note, however, that loss of enhancement-layer traffic is pos-
sible for �F1 � 
 . As ) '
 does not represent the actual loss
in the enhancement layer, we next determine the fraction of
enhancement-layer traffic

% '
 effectively lost according to the
partial-loss model. Recall that in the partial-loss model, the frac-
tion of traffic lost from the enhancement layer when = 
 ��	� + �
and there is loss of data in the base layer equals the fraction
of traffic lost from the base layer. Specifically, the fraction of
enhancement traffic effectively lost is

% '
 � & �# L �6
6���	� � 3A��	� P G Q �& �# �6
6���	� Q � 0 (20)

where

3A���	� � � ��: / � 
 ���	�������	� 3 �6���	��0�3�
6���	� 3 S (21)

The above expression for the effective consumption rate in the
enhancement layer follows directly from the definitions of the
loss rates in the partial-loss model. Note that these definitions
imply that for any policy 5% '
 1 ����� / % '� 0 ) '
 3 S (22)

A. Preliminary Results

Having defined the loss probabilities for the streaming of
finite-length video, we now present some necessary preliminary
results, which will aid in the derivation of the optimal streaming
policies. For detailed proofs of these results see [24]. For these
results, we again assume that � � ���	�C� � � 
 ���	� for some constant



� . Let ���� denote the average encoded rate of the base layer, i.e.,�� � � �� & �# � � ��	� Q � . Similarly define �� 
 . We consider the class
of static policies and establish the following lemma, which par-
allels the results obtained in Section IV-C for the infinite-length
case.

Lemma 1: (a) Fix a static policy � � . If � � 1 �� , then
(i) = �����	� ��� implies = 
����	�O� � ;
(ii)

� "� - � "
 ;
(iii)

% "
 � ) "
 .
(b) If � � - �� , then

(i) = 
���	�C� � implies = �����	�O� � ;
(ii)

� "� 1 � "
 ;
(iii)

% "
 � % "� .
From Lemma 1, we have

���"
 � ���"� , i.e., under policy ��
streaming for the two layers ends at the same time. To simplify
notation, write

� � for
� �"
 . We next present a second important

result, which establishes a key property of the static policy �� .
Lemma 2: � ��� / �+'� 0 �+'
 3 - � � for any policy 5 .

Lemma 2 states that policy �� maximizes the streaming duration
for both layers, thereby utilizing available bandwidth for at least
as long as any policy 5 . As we shall see, in the case when both
layers are equally important, this property is key in achieving
optimality.

B. Optimization Problem

We use the results in the previous subsection to determine the
optimal streaming policy. We approach this problem by formu-
lating and solving the following optimization problem:

�����' � ' � E L QT�Y�&9 � % '� � 7 QR
6�&9;� % '
 � P&0 (23)

in which Q � and QR
 are fixed constants and denote the relative
importance of the encoded base and enhancement layers. Note
that when Q � � ���� and QR
A� ��6
 , we are optimizing the ex-
pected sum of base and enhancement layer average throughput.
Throughout this section we supposeQ 
Q � 1 �� 
�� � S (24)

Condition (24) implies that the enhancement layer has a greater
(or equal) impact than the base layer on the quality of the de-
coded video. In particular, (24) holds if in order to improve
the overall image quality, it is desirable to trade off increases
in base-layer loss for decreases in effective enhancement-layer
loss. We thus seek the optimal streaming policy 5 that maxi-
mizes the expected weighted fraction of traffic consumed in both
layers, for the case when the enhancement layer is considered at
least as important as the base layer. For this case, we shall show
that the static policy �� � �%&!�% ! G �% � achieves optimality. We con-
sider the optimization of the same objective function when the
encoded base-layer stream has a greater impact on quality than
the enhancement-layer stream in a following subsection.

We approach the optimization problem in (23)-(24) by first
solving the simpler problem

� ���' � ' � E L ��Y�6�&9;� % '� � 7 ���
6�(9;� % '
 � P 0

and then showing that the obtained solution is also optimal for
(23)-(24). The following theorem states that policy �� optimizes
function

� ' .
Theorem 2: The policy �� is optimal for

� ' , i.e.,
� �" 1 � ' ,

for any policy 5 .
Proof: Using the results of Lemma 1, and the definitions for the
loss probabilities, it can be shown that

� �" � E

� 9� E ���
# , ���	� Q �
	 S

Additionally, it can be shown that

� ' -
E

� 9� E������� ���!�� ������# , ���	�&Q � 	 S
Applying Lemma 2 to the right-hand side of the above two rela-
tionships yields

E

� 9� E ���
# , ���	� Q �
	 1 E

� 9� E������� � �! � � �� �# , ��	�&Q �
	 0
which implies that

� �" 1 � '
We now turn to the maximization problem in (23)-(24). Using

Theorem 2 we derive the following (see [24]).
Corollary 1: The policy �� is optimal for

� ' , i.e.,
� �" 1 � '

for any 5 when � �� ! 1 �%&��%&! .
The above corollary states that when the enhancement layer

has an equal effect on the quality of the decoded video as the
base layer, the optimal policy is a specific static policy, namely,
the optimal policy allocates a constant fraction of bandwidth to
each layer in proportion to each layer’s transmission rate. Again,
the optimal policy utilizes prefetching when possible, but is in-
dependent of the prefetch buffer contents.

VI. HEURISTICS FOR FINITE-LENGTH VIDEO

Having solved the layered streaming problem for the case
when the enhancement layer has a relatively high impact on
quality, we now consider the important case in which the base
layer has a greater impact on quality than the enhancement layer.
We suppose throughout this section thatQR
Q � U ���
�� � S (25)

Under this condition , the complexity of the optimization prob-
lem in (23) increases significantly. In this paper, we do not pro-
vide an analytical solution to the optimal streaming problem un-
der condition (25). Instead, we develop heuristic streaming poli-
cies and investigate the performance of these policies through a
simulation study. Our results show that static policies can per-
form poorly when (25) holds.

A. Bounds on Performance

We begin by observing that there are upper bounds on the best
possible performance that can be achieved by any streaming pol-
icy. In this subsection we derive two types of upper performance
bounds. We will later compare these bounds to the performance
of our heuristic streaming policies for finite-length video. A first



bound results from a traffic conservation relationship. It can be
shown using a simple traffic conservation statement (see [24])
that the following holds for any general policy 5
������(9;� % '� �D7 ��6
��&9;� ) '
 � � 9� E������� ���!�� ������

��� , ���	� Q ��S
Using

% '
 1 ����� / % '� 0 ) '
 3
and

� � 1 ����� / �+'� 0 �+'
 3
(from

Lemma 2), and taking the expectation of both sides gives the
bound

��Y�6�&9;� E L % '� P � 7 ���
 �&9;� E L % '
 P$� -�� �60 (26)

where

� � � 9� E L E
� �
��� , ��	� Q �"P S (27)

Note that
� � in this bound is a constant and does not depend on

policy 5 .
A second performance bound can be obtained by noting that

loss in the base layer is always minimized when all of the avail-
able bandwidth is allocated to the base layer, until this layer is
fully prefetched. Applying static policy � ��� 9 (see [24]) yields

E L % '� P 1�9;� E L & ���!��� , ���	� Q �"P& �# � � ���	� Q�� � � � 0 (28)

where
� �� is

� "� with � � 9 . Note that
� � does not depend on5 .

B. Threshold Policies and Simulation

We now consider heuristic streaming policies for finite-length
video. We begin by defining a heuristic threshold policy denoted
by �5 , which varies the fraction of bandwidth allocated to each
layer according to current prefetch buffer contents. In particu-
lar, when the content of the base layer prefetch buffer is below
a certain constant threshold, denoted by � thres, policy �5 allocates
all of the available bandwidth to the base layer. When the base
layer prefetch buffer content exceeds the threshold, policy �5 de-
creases the fraction of the bandwidth allocated to the base layer
to �� . Once the base layer has been entirely prefetched, the pol-
icy allocates all available bandwidth to the enhancement layer.
Thus �5 � � 5 �����	��0"�21�� � � , where 5 �6���	� at time � is given by

5 � ���	�C�
567 68
9 when = � ��	�;U � thres

�� when = ����	�;1 � thres� when = � ��	�(+ & �� � � � N�� Q N
A key issue in the implementation of the threshold policy is
making a reasonable choice for the value of the threshold. High
threshold values may lead to overly conservative policies that
result in unacceptable losses in the enhancement layer for in-
significant improvement in the base layer losses. On the other
hand, very low thresholds may result in unsatisfactory perfor-
mance in terms of the losses incurred in the base layer. The
development of heuristics for determining appropriate threshold
values is an area of ongoing work.

We have investigated the performance of a number of stream-
ing policies, including the threshold policies defined above, in
a simulation study. In this study we used a specific stochastic
model for , ���	� . Specifically, we let , ���	� vary randomly among
two constant levels

� � and
� � , with probability � and �&9 � � � ,

respectively. We let , ���	� remain in each of the two states for a
random period of time. We denote � � and � � for the mean dura-
tion in each state of , ��	� . Note that � � � �

� � G �	� . We define the

system utilization by 
 � E � )+��� ��� �%&!(G �%&��� .
Figure 5 shows the results of a simulation study in which


 ��9 . Each of the three graphs plots the expected loss prob-
ability in the enhancement layer versus the expected loss prob-
ability in the base layer for two classes of streaming policies:
static policies and threshold policies . Different static policies
were evaluated by varying the value of � � and different thresh-
old policies were evaluated by varying the value of � thres. Note
that graph (a) also includes an additional class of streaming poli-
cies, namely, policies that do not employ prefetching. Graph
(b) on the right simply represents a zoomed-in version of graph
(a). Graph (c) was obtained by varying � � - � , while maintain-
ing all other critical parameters such as 
 , � and

�
constant.

Note that as � � - � increases, the likelihood of entering a long
period during which , ���	� remains in the same state also in-
creases. As we shall see, the existence of long periods during
which , ���	� is constant has adverse consequences on perfor-
mance. In graph (a), � � - � � � S � 9 . The results illustrate that no-
prefetching policies result in poor performance. For policies that
employ no prefetching, � % � 0 % 
 � tuples are always dominated by� % � 0 % 
 � tuples resulting from static or threshold policies. This
result confirms the significant benefits of prefetching. We see
that the static policy �� , which allocates bandwidth to the lay-
ers in proportion to their consumption rates and results in equal
losses in both layers, minimizes

% 
 for all cases. This is consis-
tent with the results in subsection V-B, where it was shown that
policy �� is optimal when the enhancement layer is at least as
important as the the base layer. Graph (a) also illustrates the per-
formance of threshold policies for different � thres values. Clearly,
when base-layer loss must be minimized, threshold policies at-
tain significantly better performance than static policies.

The improvements attained by threshold policies are better
seen in the zoomed in version of graph (a) on the right. A thresh-
old policy resulting in expected base-layer loss of 0.5% gives a% 
 near 4%. A static policy with

% � equal to 0.5%, however,
results in a

% 
 greater than 8.5%. Thus, threshold policies are
useful when, in order to achieve high overall quality, it is de-
sirable to minimize base-layer loss. Note that the zoomed-in
version also illustrates the upper performance bounds derived
in section VI-A. The diagonal bound in the graph represents
the bound in (26) obtained from the traffic conservation state-
ment. The vertical bound in the graph, indicates the minimum
expected loss in the base layer determined by (28) (in this case,
the vertical bound indicates that the minimum expected loss in
the base layer is equal to zero). As illustrated by the graph,
the performance of threshold policies approximates the perfor-
mance of the two bounds combined.

Graph (c) was obtained by setting � � - � ��� S�9 . Increasing
the value of � � - � has a negative effect on the performance of
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Fig. 5. � � �	� � ��� tuples for three types of streaming policies: no-prefetching polices, static policies and threshold policies.

static and threshold policies, as seen in graph (b). The upper
performance bounds indicate that, in this case, it is not possible
to render the base layer in its entirety without incurring loss. A
higher � � - � increases the likelihood of situations in which there
are sustained periods of insufficient bandwidth. During these
periods, video can not be prefetched and losses often become
unavoidable. The graphs again illustrates that when base layer
loss should be minimized, threshold policies result in higher per-
formance than static policies. See [24] for additional numerical
results.

Note that the heuristic threshold policy �5 relies on a con-
stant threshold level for the content of the base-layer prefetch
buffer. A natural extension of the threshold policy is to utilize
a dynamic threshold level. We are currently studying dynamic
threshold policies and have a simple conservative estimate for
the threshold value, which depends on the future base-layer con-
sumption rate and on dynamic estimates for the future available
bandwidth [6]. Finally, we are also conducting simulations us-
ing real Internet traces and are currently examining the perfor-
mance of the classes of streaming policies presented here under
real Internet conditions [6].
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