
Streaming Stored Continuous Media
over Fair-Share Bandwidth

Despina Saparilla Keith W. Ross
Dept. of Systems Engineering Institut EURECOM

University of Pennsylvania 2229, route des Crêtes
Philadelphia, PA 19104 Sophia Antipolis, France

saparill@eurecom.fr ross@eurecom.fr

Abstract—We investigate the impact of the long-term behavior of
fair-share bandwidth on transmission schemes for streaming stored
Continuous Media (CM). To obtain typical fair-share bandwidth con-
ditions, we perform a series of Internet experiments in which we
monitor TCP bulk-data transfers between various sites, and collect
average TCP throughput traces. The collected traces exhibit high-
variability over a broad range of time scales as well as self-similar
scaling behavior over longer time scales. Under fair-share bandwidth
conditions, we evaluate the performance of a series of data transmis-
sion schemes for non-layered CM, and of several bandwidth alloca-
tion schemes for streaming layered CM. Our findings demonstrate
that prefetching during playback over intervals of several minutes is
necessary for achieving best quality. For layered CM encoded into
two layers, we propose a threshold-based inter-layer bandwidth allo-
cation scheme, and a measurement-based heuristic for dynamically
computing the threshold. Our empirical results show that, using
conservative estimates for future average bandwidth, our heuristic
is highly reliable.

I. INTRODUCTION

Recent years have seen an explosive increase in the con-
sumption of audio and video programming on the Inter-
net. We expect that traffic from continuous-media (CM)
streaming applications, delivering stored video and audio
to consumers on demand, will constitute a major fraction
of Internet traffic in the upcoming years. Currently, most
CM streaming applications run over UDP, using propri-
etary transport protocols that in most cases do not imple-
ment adequate congestion avoidance algorithms. Given
the projected growth in CM streaming traffic, this poses
a threat to the fair and efficient utilization of network re-
sources. To preserve Internet performance, streaming ap-
plications should be designed to incorporate effective con-
gestion avoidance mechanisms such that streaming traffic
flows obtain only a fair share of link bandwidth [1].

TCP-conformant traffic flows (HTTP, SMTP, NNTP
etc.) dominate today’s Internet. Thus, to allow for fair
bandwidth sharing, streaming applications should be de-
signed to be cooperative with TCP flows by appropriately
reacting to congestion. The development of congestion
control mechanisms for streaming applications is an area
of ongoing research. Recent research has shown that con-
gestion control can be incorporated in UDP-based stream-
ing applications using TCP-friendly algorithms for deter-
mining fair-share bandwidth [2][3][4][5][6].

To cope with the unpredictability and variability of
available bandwidth between server and client, efficient
transmission schemes for streaming stored CM must be

implemented in order to achieve satisfactory performance.
In this paper we investigate the impact of the long-term
behavior of fair-share bandwidth on data transmission
schemes for streaming stored CM. We use TCP traces col-
lected by monitoring several TCP bulk-data transfers in a
series of Internet experiments between the U.S. and Eu-
rope, and between two European sites, to obtain typical
fair-share bandwidth traces. Our analysis of the traces
shows that fair-share bandwidth exhibits a wide range of
variation over many time scales, and a degree of self-
similar scaling behavior over long time scales.

We consider data transmission schemes for streaming
stored non-layered CM, and for streaming scalable CM en-
coded into two layers. We evaluate the performance of the
transmission schemes in an empirical study that is based
on our collected bandwidth traces. For non-layered CM,
we find that a significantly higher level of quality can be
achieved when the CM is prefetched during playback into
client storage. Prefetching CM during playback over short
intervals, of a few 10’s of seconds, performs better than
transmission schemes that employ no prefetching. Near-
optimal performance is achieved, however, when the CM
is prefetched during playback over intervals that are at least
three to four minutes long. One interesting observation is
that streaming stored CM directly over TCP often provides
near optimal performance.

Our results with non-layered CM also motivate the use
of layered encoding. Layered CM allows the streaming
application to cope with the wide fluctuations in fair-share
bandwidth by adjusting the transmission rate or the quality
of the stream according to the available bandwidth condi-
tions. We consider scalable CM encoded into two layers,
a base layer and an enhancement layer. In our earlier work
we developed a model and theory for the problem of dy-
namically allocating fair-share bandwidth among the two
layers in order to minimize the impact of client buffer star-
vation on the quality of the decoded stream [7]. In this
paper we evaluate the performance of two classes of inter-
layer bandwidth allocation schemes in simulations based
on fair-share bandwidth traces. We then propose a scheme
that streams the enhancement layer only when we are con-
fident that the base-layer buffer at the client will hence-
forth not be starved. To implement this type of streaming
scheme, the server must track client prefetch buffer con-
tent, as well as estimate the likelihood of future starva-

tion in the base layer. The estimate of likelihood of base-
layer starvation depends on (i) the amount of base-layer
data prefetched at the client, (ii) the consumption rate of
base-layer data, and (iii) a conservative estimate of the fu-
ture available bandwidth. We develop a threshold-based
heuristic for adding and dropping the enhancement layer
that uses conservative estimates of future average band-
width. Our results with fair-share bandwidth traces show
that our heuristic threshold-based scheme is highly reli-
able, that is, it renders the base layer without loss, and it
achieves long and continuous viewing of the enhancement
layer with infrequent quality fluctuations.

The rest of the paper is organized as follows. In Sec-
tion II we describe our methodology for collecting TCP
traces and analyze of the long-term scaling behavior of the
collected traces. In Section III we quantify the benefits
of prefetching when streaming non-layered video. Sec-
tion IV considers layered-CM streaming over fair-share
bandwidth. Finally, Section V concludes the paper.

A. Related Research

A significant amount of research reports on the self-
similar nature of aggregate network traffic. Statistical
analysis of Ethernet LAN traffic and wavelet-based scal-
ing analysis of Internet WAN traffic have shown that
aggregate traffic exhibits self-similar scaling behavior
over time scales of a few hundreds of milliseconds and
larger [8][9][10]. Previous work on the scaling behavior
of network traffic has considered packet-level and TCP
connection-level traces. In this paper, we focus on the
long-term behavior of a single TCP connection, initiated
by a bulk data transfer. We are interested in measuring
TCP throughput at the receiver to gain insight on the im-
pact of fair-share bandwidth behavior on streaming CM.

Rejaie et al present a broad range of architectural con-
siderations for streaming layered encoded video [11][12].
They argue for the need for end-to-end congestion con-
trol, quality adaptation and error control in multimedia
streaming applications. In [11] they develop mechanisms
for adapting the quality of streaming video playback while
performing congestion control. Their proposed mecha-
nisms are suitable only for congestion control schemes
that employ an additive increase multiplicative decrease
(AIMD) algorithm. Finally, their buffer allocation mecha-
nisms are evaluated using bandwidth traces from the Rate
Adaptation Protocol (RAP) [12], but their performance is
not tested using real Internet traces. Our approach differs
in many respects. We evaluate the performance of trans-
mission schemes for single-layer and layer-encoded video
based on traces collected from TCP connections. We quan-
tify the impact of prefetching data into client buffers, as
well as the required client resources. Finally, we develop
a threshold-based policy for streaming scalable CM that is
based on estimation of future available bandwidth condi-
tions.

II. LONG-TERM BEHAVIOR OF FAIR-SHARE

BANDWIDTH

We traced a number of unidirectional TCP bulk data
transfers between three pairs of hosts to measure the be-
havior of the bandwidth that is available to a congestion-
aware application. In each data transfer, the server side of
the application acted as an infinite source, sending bytes
as quickly as possible into the TCP connection during one
hour. At the receiver, the client application read from the
TCP connection as quickly as it could, and recorded mea-
surements on the incoming data stream to determine the
throughput of the TCP flow. In particular, for each socket
read the receiver recorded the number of received bytes
and the interarrival time between successive reads. To en-
sure that the throughput of the flow was not limited by the
receiver’s advertised window, the size of the TCP receive
buffer was set to the maximum value (64 KB) by modi-
fying the Unix socket options for the connection. Based
on these measurements, we collected 1-hour long instan-
taneous throughput traces for TCP flows during four con-
secutive days at different times of the day. Three hosts lo-
cated in different countries participated in the data transfer
experiments: host FR located in France was an Ultra-5/10
running SunOS 5.5.1, host US located on the East coast of
the United States was an Ultra-1 running SunOS 5.5.1, and
host FI located in Finland, was an alpha Workstation run-
ning DEC OSF/1. Host FR was connected to a 10 Mbps
Ethernet, and hosts US and FI were connected to 100 Mbps
Ethernets.

Table I summarizes the collected traces. The average
throughput seen by the client application varies consider-
ably depending on the source-destination pair, the direc-
tion of the transfer (traces were obtained for both direc-
tions of a link), as well as the time of the day. We observe
in particular that traces A1-A4 have consistently higher
throughput than traces B1-B4, which were collected be-
tween the same pair of hosts in the two different directions.
Similarly, traces C1-C3 collected from transfers between
hosts FI and FR have consistently higher average through-
put than traces D1-D3 collected in the opposite direction.
(We suspect that these asymmetries in throughput are due
to higher link capacity in the direction U.S. to France, or in
the direction Finland to France, than in the opposite direc-
tions.) Peak throughput is calculated by taking the largest
throughput of the trace averaged over all one-second inter-
vals.

We used the instantaneous throughput measurements to
study the time-scale behavior of a TCP flow. Figure 1
shows the local averages of traces A1 and A3 computed
at two different time scales. The graphs on the left-hand-
side illustrate local averages of the traces over 10-second
intervals and the graphs on the right show local averages
over 100-second intervals. We observe that the throughput
traces exhibit a high degree of variability and burstiness
over both time scales. Average throughputfigures obtained
for the remaining traces show similar behavior.

We have taken a simple approach, namely time-variance
plots, for statistically studying the scaling behavior of the

Trace Src- Throughput (Mbps) MB
Dest. Peak Mean �

A1 US-FR 2.41 0.70 0.43 318
A2 US-FR 3.89 1.10 0.82 495
A3 US-FR 3.95 1.93 1.34 869
A4 US-FR 3.99 2.18 1.48 984
B1 FR-US 1.53 0.41 0.23 186
B2 FR-US 1.10 0.28 0.16 125
B3 FR-US 1.13 0.37 0.18 165
B4 FR-US 1.87 0.45 0.23 202
C1 FR-FI 5.91 3.38 1.50 1520
C2 FR-FI 5.98 4.00 1.43 1797
C3 FR-FI 6.07 4.34 1.48 1953
D1 FI-FR 3.01 1.67 1.13 752
D2 FI-FR 3.04 1.79 1.15 807
D3 FI-FR 3.02 1.87 1.19 842

TABLE I

SUMMARY OF 1-HOUR LONG TRACES.

traces. Time-variance plots are useful for determining
whether a time series of data is self-similar, and if so, for
estimating the self-similarity parameter H (Hurst param-
eter). For a stationary time series X, the aggregated time
series X(m) = X

(m)
k

; k = 0; 1; 2; : : : can be obtained by
averaging the original series over non-overlapping, adja-
cent blocks of size m. This aggregating process can be
expressed as: X(m)

k
= 1

m

P
km

i=km�(m�1)Xi. For a self-

similar process, the variance of X(m) obeys the follow-
ing for large m: V ar(X (m)) � V arX

m� , where the self-
similarity parameter H = 1 � (�=2); 0 < � < 1. Time-
variance plots are obtained by plotting logV ar(X (m))

against log(m). For a self-similar process, the time-
variance plot should yield a straight line with slope ��,
from which the Hurst parameter can be estimated. Slope
values between �1 and 0 (0:5 � H � 1:0) suggest that
the process is self-similar.

Starting with m = 1 second, we obtained an initial time
average series for each throughput trace. We generated ag-
gregated data series by increasing m by a factor of 2 until
a total of ten series were obtained. Our results showed that
for all traces the time-variance plots could be closely ap-
proximated by a straight line, indicating that the traces ex-
hibit self-similar scaling behavior over longer time scales
of seconds to hundreds of seconds. From the time-variance
plots we estimated � by fitting a least squares line through
the data points. The Hurst parameter values for the 14
traces were in the range 0:60 � 0:87. From the observa-
tions and testing in this section, we conclude that fair-share
bandwidth significantly varies on many time scales and ex-
hibits a degree of self-similarity.

III. STREAMING NON-LAYERED CM

Using the traces from the previous section, we now com-
pare the performance of several data transmission schemes
for streaming non-layered CM. We consider three types of
transmission schemes: full prefetching, no prefetching and
partial prefetching.

In the full prefetching scheme the server application
transmits the CM into the network at the full rate allowed
by the available bandwidth. This implies that when the
available bandwidth exceeds the CM consumption rate, fu-
ture portions of the CM are prefetched into client storage,
which we suppose to be infinite. (This assumption is justi-
fied by the fact that most PCs being sold today have 10-20
Gbytes of disk.) Let X(t) denote the available bandwidth
as seen by the client application at time t. Thus, X(t) is
the maximum rate at which the client application can read
data from the network at time t. Let r denote the consump-
tion rate of the CM in bits per second. (For simplicity, we
assume that the CM is CBR encoded). We suppose that the
server application only transmits data that will make their
deadline for timely consumption. Thus at time t, the server
application transmits the CM at rateX(t), and all the trans-
mitted data will eventually be consumed by the client. To
smooth out short time scale bandwidth variations and to
remove jitter, the scheme allows for a few seconds of CM
to build up in the client’s prefetch buffer before playback
begins. We denote the initial playback delay by� seconds.
Denoting the time at which the client begins to receive the
CM by t = 0, at time t = � the client begins to remove
the CM from its prefetch buffer at the consumption rate r.
If the prefetch buffer becomes empty, the client can par-
tially receive the CM stream by reading directly from the
network while incurring some loss of data. (The received
data can be used in this case to approximate the stream us-
ing an error concealment scheme.) Thus, during the first �
seconds the client prefetch buffer is fed at rate X(t). For
t � �, the prefetch buffer is fed at rate X(t) and drained
at rate r. Let Y (t) denote the content of the client prefetch
buffer at time t. When Y (t) > 0, there is no loss. When
Y (t) = 0, data is lost from the stream at rate [r�X(t)]+.

Figure 2 shows the fraction of lost data resulting from
the full prefetching scheme as the CM consumption rate
r varies from 10 Kbps to 3 Mbps. The two graphs cor-
respond to simulations based on traces A1 and A2 in Ta-
ble III. An initial prefetch delay of 4 seconds was used.
There is a rapid increase in the fraction of lost data when
the consumption rate of the stream exceeds a certain criti-
cal value. Below this critical value the CM can be streamed
without any loss. For trace A1, the CM can be streamed
without loss at consumption rates below 490 Kbps. For
trace A2, shown on the right, there is no loss at consump-
tion rates below 690 Kbps. When the consumption rate
exceeds these critical values, the fraction of lost data for
both traces increases rapidly to values in the order of 10�2,
indicating that the reconstructed CM would suffer signifi-
cant quality degradation, even when error concealment is
used. Similar graphs, not shown here due to space limita-
tions, were obtained for the remaining of the traces. The
graphs demonstrate that the fraction of lost data increases
with the consumption rate, but the increase can be more or
less gradual depending on the trace. For each of the traces,
Table II summarizes the maximum CM consumption rate
at which the full prefetching scheme has no loss as well
as the maximum consumption rate at which there is loss

Trace avg. avail. max. rate for max. rate for
name rate no loss 10�3 loss
A1 0.70 0.48 0.54
A2 1.10 0.68 0.76
A3 1.93 1.42 1.85
A4 2.18 1.26 2.01
B1 0.41 0.41 0.41
B2 0.28 0.18 0.22
B3 0.37 0.30 0.34
B4 0.45 0.38 0.42
C1 3.38 2.75 2.92
C2 4.00 3.88 4.06
C3 4.34 4.08 4.32
D1 1.67 1.51 1.64
D2 1.79 1.40 1.75
D3 1.87 1.72 1.88

TABLE II

MAXIMUM CONSUMPTION RATE (MBPS) FOR NO LOSS WITH FULL

PREFETCHING.

in the order of 10�3. In general, the maximum CM con-
sumption rate at which there is no loss is at least 70% of the
average available bandwidth. The maximum rate at which
the loss is below 10�2 is typically within 15% of the max-
imum rate for no loss, indicating that there is only a small
range of rates that result in loss fractions in the order of 0
and 10�3.

We now consider an alternative transmission scheme in
which the server application never prefetches future por-
tions of the CM stream into client storage (but still allow-
ing for an initial playback delay). In the no prefetching
scheme the server application transmits the CM at the con-
sumption rate, unless the available bandwidth is less than
the consumption, at which time the CM is transmitted at
the available bandwidth rate. Thus, the transmission rate
at time t is minfX(t); rg. Data arrives to the client ap-
plication buffer at rate minfX(t); rg, and after a playback
delay of � seconds, data is removed from the buffer at rate
r. As a result, the amount of prefetched data in the client
application buffer never increases after time t = �.

We evaluated the no prefetching scheme with a playback
delay of 4 seconds according the amount of data lost from
the CM stream. Figure 2 shows the results for traces A1
and A2. The no prefetching scheme results in significantly
higher loss than prefetching. Even at very low consump-
tion rates, the no prefetching scheme generates losses in
the order of 10�1. High fractions of lost data occur be-
cause this scheme fails to smooth out the short time scale
variations in available bandwidth.

We refer to a third transmission scheme that has the ef-
fect of partially smoothing the available bandwidth over
intervals of short length, as partial prefetching. Figure 3
describes the partial prefetching scheme. The server appli-
cation transfers the CM from storage to the server applica-
tion buffer. We consider time to be divided into intervals of
m seconds and suppose that at the beginning of each inter-
val the application reads from the storage r �m bits of in-

formation to the server application buffer. Let Ys(t) denote
the amount of data in the sender application buffer at time
t. In each m second interval, the application buffer writes
to the network at rate X(t) as long as Ys(t) > 0. If at the
end of any interval Ys(t) > 0, the buffer is flushed (i.e.,
the data remaining in the buffer at the end of the interval is
never sent into the network and is lost). Thus, Ys(t) = 0

for t = 0;m; 2m; : : : . We let R(t) denote the rate at which
data arrives to the client transport-layer buffer, i.e.,

R(t) =

(
X(t) when Ys(t) > 0

0 when Ys(t) = 0:

As soon as data is received at the client, the application in
the client reads the data from the transport-layer buffer into
the receiver application buffer. After a playback delay of�
seconds, the client begins to remove data from the receiver
application buffer for decoding and play out. Again denote
Y (t) for the amount of data in the client prefetch buffer.
The rate at which the client application buffer is drained
for t � � is

D(t) =

(
r when Y (t) > 0

minfr;R(t)g when Y (t) = 0:

Loss of data occurs if the application buffer is empty, that
is Y (t) = 0 and R(t) < r. The rate at which data is lost
from the CM stream at time t can be expressed as:

L(t) = [r �R(t)]+1(Y (t) = 0):

We evaluated the partial prefetching scheme while vary-
ing the interval size m. We refer to m as the smoothing
parameter. As m increases, information is written to the
sender application buffer at the beginning of each interval
in larger blocks. Writing in larger blocks allows smooth-
ing of the transmission rate over the interval’s length. A
smoothing parameter m = 1 corresponds to the full
prefetching scheme whereas m ! 0 corresponds to the
no prefetching scheme.

Figure 2 shows the fraction of lost data resulting from
partial prefetching schemes with smoothing parameters
m = 4 and m = 60 seconds as the CM consumption rate
varies from 10 Kbps to 3 Mbps. The initial prefetch de-
lay was again 4 seconds. The figure illustrates that the
performance of partial prefetching degrades considerably
as the smoothing parameter decreases. Furthermore, full
prefetching results in significantly lower loss than the par-
tial prefetching schemes considered. For trace A1, the
maximum consumption rate for which there is no loss
when m = 60 seconds is approximately 70% of the max-
imum rate for no loss achieved with full prefetching. Al-
though the performance of partial prefetching schemes can
vary among different traces, our results demonstrate that
in order to obtain the performance of the full prefetching
scheme, partial prefetching must use smoothing parame-
ters of at least three minutes. Table III summarizes some
of the results obtained with trace A1 for full prefetching
and partial prefetching with m = 4 and m = 60.

0 1000 2000 3000 4000
0

1

2

3

4x 10
6

bp
s

sec

US to FR −− 29/06 15:00

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3x 10
6

bp
s

sec

US to FR −− 29/06 15:00

0 1000 2000 3000 4000
0

1

2

3

4x 10
6

bp
s

sec

US to FR −− 29/06 17:00

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3x 10
6

bp
s

sec

US to FR −− 29/06 17:00

Fig. 1. Average throughput over time scales of 10 and 100 seconds for traces A1 and A3.

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

consumption rate (Mbps)

fr
ac

tio
n

da
ta

 lo
st

US to FR −− jun29 15:00

no prefetching
partial pref. m=4 sec
partial pref. m=60 sec
full prefetching

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

consumption rate (Mbps)

fr
ac

tio
n

da
ta

 lo
st

US to FR −− jun29 16:00

no prefetching
partial pref. m=4 sec
partial pref. m=60 sec
full prefetching

Fig. 2. Fraction of data lost for full prefetching, no prefetching and partial prefetching transmission schemes with traces A1 and A2.

video
stored

D(t)

R(t)

Transport
Layer

receiver
app.

buffer

receive
buffer

playout
Internetserver application

r �m bits each m sec

sender
app.

buffer X(t)

ClientServer

Fig. 3. End-to-end architecture for streaming stored video.

Full Prefetching Partial Pref. (m = 60) Partial Pref. (m = 4)
Rate Loss Max Buf. Loss Max Buf. Loss Max.Buf.

(Mbps) Fraction Size (min) Fraction Size (min) Fraction Size (min)
0.48 0.00 16.08 9.45e-03 1.00 1.07e-01 0.04
0.49 2.14e-04 15.28 1.16e-02 1.00 1.11e-01 0.04
0.50 1.31e-03 14.38 1.41e-02 1.00 1.15e-01 0.04
0.55 1.04e-02 11.37 3.31e-02 0.98 1.36e-01 0.35

TABLE III

FULL PREFETCHING AND PARTIAL PREFETCHING SCHEMES WITH TRACE A1.

In conclusion, our empirical results for streaming
CM under fair-share bandwidth conditions indicate that
prefetching is critical. Prefetching over intervals of a few
minutes can effectively smooth out short time-scale band-
width variations as well as long-term droughts in band-
width. Our results indicate, however, that even the full
prefetching scheme can not fully utilize the average avail-
able bandwidth. This is clearly seen in Table II where we
observe that the maximum consumption rate at which the
CM can be streamed with no loss is typically 60� 70% of
the average available rate.

An interesting secondary observation is that TCP with
prefetching can provide near optimal performance for
streaming over fair-share bandwidth for a wide range of
consumption rates. For a given trace, we observe two
thresholds, tgood and tbad. If the consumption rate is be-
low tgood, then TCP with prefetching has no loss, and is
therefore better than any TCP-friendly UDP scheme. If the
consumption rate exceeds tbad, then neither TCP nor UDP
schemes will give satisfactory quality. If the consumption
rate is between these thresholds, then a TCP-friendly UDP
scheme might provide superior performance. However, the
gap between these two thresholds is typically very small.

IV. STREAMING LAYERED VIDEO

For the remaining of this paper we consider layer-
encoded CM. Layered streaming is an appealing stream-
ing solution for CM applications that need to cope with
the wide and random variations of the available bandwidth
between server and client. In general, the CM stream
is encoded into a base-layer stream and one or multiple
enhancement-layer streams. We suppose that the CM is
encoded into two layers, a base layer and an enhance-
ment layer. There are advantages to using only a single
enhancement layer. A single enhancement layer requires
only a single enhancement-layer decoder at the receiver,
and adds little coding overhead [13]. When CM is en-
coded into two layers, a decoding constraint requires the
base layer to be available at the client in order to decode
the enhancement layer. If only the base layer is delivered, a
CM signal can still be reconstructed, resulting in a low but
acceptable quality at the receiver. The streaming applica-
tion should make the enhancement layer stream available
for decoding whenever possible, to achieve high quality
during playback. At the same time, the application should
maintain a relatively constant quality by avoiding frequent

and short rendering periods of the enhancement layer.

A. The Layered Streaming Model

We now provide a description of the layered stream-
ing model. For simplicity, we suppose that the base and
enhancement layers have been encoded at constant rates,
denoted by rb and re, respectively. We let T denote the
length of the CM in seconds. Let X(t) denote the avail-
able bandwidth at time t. We suppose that the server al-
ways transmits the CM at the rate allowed by the avail-
able bandwidth. We let �b(t) and �e(t) denote the fraction
of X(t) that the server allocates at time t to the base and
enhancement layers, respectively. Let Yb(t) and Ye(t) be
the contents of the base and enhancement layer prefetch
buffers (at the client) at time t, respectively. Data is lost
from the base layer when the base-layer prefetch buffer
is starved, i.e., when Yb(t) = 0, and X(t) < rb. The
loss rate in the base layer at time t can be expressed
as Lb(t) = [rb � �b(t)X(t)]+1(Yb(t) = 0). Loss of
enhancement-layer data occurs when there is loss of base-
layer data, or when the enhancement-layer buffer at the
client is starved. Multiple models can be used for deter-
mining loss in the enhancement layer. [7]. In the nu-
merical work that follows, we use a model in which all
enhancement-layer data that reach the receiver buffer can
be decoded as long as the corresponding base-layer data
is also available at the receiver. The loss rate in the en-
hancement layer at time t can be expressed as Le(t) =

maxf re
rb
Lb(t); [re � �e(t)X(t)]+1(Ye(t) = 0)g:

We consider two classes of inter-layer bandwidth alloca-
tion schemes, namely, static and threshold policies. With
static policies, the allocation �b(t) is constant until one of
the layers is fully prefetched. Under a static policy, de-
noted by �b, 0 � �b � 1, the base-layer prefetch buffer
is fed at rate �bX(t) and the enhancement-layer prefetch
buffer is fed at rate �eX(t), where �b + �e = 1. Under a
threshold policy, denoted by �̂, the fraction of bandwidth
allocated to each layer varies according to the buffer con-
tents. A threshold policy is defined as �̂ = (�b(t); t � 0),
where �b(t) at time t is given by

�b(t) =

8><
>:
1 when Yb(t) < qthres

�̂ when Yb(t) � qthres

0 when Yb(t) > rb(T � t).

The constant qthres represents a threshold of buffered base-
layer data. When the amount of base-layer data buffered

at the receiver is below qthres, policy �̂ allocates all of the
available bandwidth to the base layer. When the amount
of buffered base-layer data exceeds qthres, then a fraction
equal to �̂ is given to the base layer. Once the base layer
has been prefetched, all of the bandwidth is allocated to
the enhancement layer. We evaluate the performance of
threshold policies for which �̂ = rb

rb+re
. Intuitively, allo-

cation �̂ allocates bandwidth among the layers in propor-
tion to each layer’s consumption rate.

B. Trace-driven Simulation

In our numerical work, we suppose for simplicity, that
both layers have equal encoded consumption rates. We
evaluate the performance of static and threshold bandwidth
allocation policies using the collected TCP traces.

0.02 0.04 0.06 0.08
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

fraction base data lost

fr
ac

tio
n

en
ha

n.
 d

at
a

lo
st

US to FR −− jun29 15:00 −− 0.70 Mbps

threshold policies
static policies

0.005 0.01 0.015 0.02
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

fraction base data lost

fr
ac

tio
n

en
ha

n.
 d

at
a

lo
st

US to FR −− jun29 15:00 −− 0.56 Mbps

threshold policies
static policies

Fig. 4. Fraction of data lost with static and threshold policies, with r

equal to 100 and 80% of the average available bandwidth.

Figure 4 shows our results with trace A1. The average
throughput of this one-hour long trace is approximately
700 Kbps. We performed a series of simulations in which
we varied the total consumption rate of the encoded CM
between 100% and 70% of the average trace bandwidth.
At each consumption rate, we evaluated the performance
of several static policies, obtained by varying the constant
allocation of bandwidth to each layer, and the performance
of threshold policies, obtained by varying the threshold for
buffered base-layer data. The graphs in Figure 4 show
the fraction of data lost from the two layers at consump-
tion rates equal to 100% and 80% of the average available
bandwidth. Both types of policies can render the base layer

without loss, but in all cases a significant fraction of data
is lost from the enhancement layer. This is not a surpris-
ing result, given our observations in the previous section,
indicating that with non-layered video, no loss is achieved
at consumption rates that are typically below 70% of the
average available bandwidth.

Our results show that threshold policies attain signifi-
cantly better perfromance than static policies. We com-
pare the performance of two specific policies: the thresh-
old policy that renders the base layer with no loss, while
minimizing the fraction of data lost from the enhancement
layer, and that of the static policy that achieves similar per-
formance. At a rate equal to the average connection band-
width (r = 0:7 Mbps), a static policy (�b = 0:72) results
in 35% of the enhancement data lost, when there is no loss
in the base layer. A threshold policy (qthres = 4 Mbits)
results in 14% of the enhancement layer lost without any
base layer loss. At a consumption rate equal to 80% of the
bandwidth (r = 0:56 Mbps), a threshold policy results in
no base layer loss and 2:87% of the enhancement data lost;
a static policy results in no base-layer loss and 4:3% of the
enhancement layer lost.

Rapid fluctuations in playback quality are undesirable.
We focus on the threshold policy discussed in the previous
paragraph, which renders the base layer with no loss while
minimizing the fraction of data lost from the enhancement
layer. We will refer to this policy as the “optimal” thresh-
old policy, and examine its performance in terms of the re-
sulting fluctuations in quality. Figure 5 shows the amount
of data buffered in each layer as a function of time under
the optimal threshold policy, for consumption rates equal
to 100% and 80% of the average available bandwidth. We
remark that there is an initial period during which the en-
hancement layer buffer is frequently drained and starved
after very short filling periods. Following this initial pe-
riod, the enhancement layer can be fully supported for
longer periods of time. For example, at a consumption rate
equal to the average available bandwidth (r = 0:7 Mbps),
a constant high quality can be achieved with both layers
shortly after the 15th minute into the CM. After the 34th
minute into the video, the enhancement layer stream can
be played back without further loss. At 80% of the aver-
age available bandwidth (r = 0:56 Mbps), the enhance-
ment layer can be continuously supported after the 10th
minute into the video.

We performed a similar experiment for all of the fair-
share bandwidth traces. Table IV summarizes some of our
results In all cases, the threshold policy implemented could
stream the base layer with no loss. Each entry in the table
indicates the time after which the enhancement layer can
be played back continuously without loss In most cases,
when the consumption rate equals the average available
bandwidth, the enhancement layer can not be played back
continuously from the beginning of the video. In many
cases, continuous playback of the enhancement layer is not
achieved until halfway through the video, as is for instance
the case with traces A1, A2, A4 or D2. We observe that for
traces B2 and B4, the enhancement layer is rendered con-

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

7

time (sec)

bu
ffe

re
d

da
ta

 (
bi

ts
)

US to FR 06/29 15:00 −− r = 0.70 Mbps

base layer
enhanc. layer

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2
x 10

8

time (sec)

bu
ffe

re
d

da
ta

 (
bi

ts
)

US to FR 06/29 15:00 −− r = 0.56 Mbps

base layer
enhanc. layer

Fig. 5. Buffered data for threshold policies resulting in no base layer loss

(r = 100 and 80% of average available bandwidth).

tinuously for an even shorter period of time (i.e. the final
15 � 20 minutes of the video). At 85% of the average
available bandwidth, the enhancement layer can be played
back continuously without loss nearly from the beginning
of the video for most traces. At 75% of the average avail-
able bandwidth the threshold policy can in almost all cases
deliver both layers without loss from the beginning of the
video.

We remark that the results obtained with traces A2 and
B1 differ from those obtained with the remaining traces.
The average throughput evolution for trace A2 (Fig. 1) ex-
hibits an increasing trend. The average connection band-
width is considerably higher than the bandwidth available
during the first half of the connection. Consequently, the
enhancement layer can not be supported early on into the
video, even at 75% of the average trace bandwidth. For
trace B1, the average throughput evolution exhibits a de-
creasing trend resulting in unusually good performance at
all consumption rates considered.

In summary, layered streaming requires an inter-layer
bandwidth allocation scheme that adapts to the long-term
fluctuations in the available bandwidth in order to deliver
the highest quality stream possible. At the same time, the
scheme should avoid rapid fluctuations in quality. Our re-
sults in this section demonstrate that a threshold-based al-
location scheme that varies the prioritization of the two
layers according to the amount of data buffered at the client

can achieve good peformance. Threshold policies perform
significantly better that static policies when the available
bandwidth exhibits long-lived fluctuations. On the other
hand, when available bandwidth does not fluctuate over
longer time scales (such bandwidth conditions were not
considered in this paper), then static policies would per-
haps provide good performance as well. We observe, how-
ever, that threshold policies can result in rapid fluctuations
in playback quality. Since future bandwidth conditions are
not known, the threshold policy may result in frequently
adding and dropping the enhancement layer. In the fol-
lowing subsection we develop a threhold-based heuristic
scheme for adding and dropping the enhancement, which
also aims at reducing quality fluctuations.

C. Dynamic Threshold Policies based on Bandwidth Esti-

mation

In this subsection we develop a heuristic for adding and
dropping the enhancement layer according to conserva-
tive estimates of average bandwidth conditions, and the
amount of data buffered at the client. Recall that thresh-
old policy �̂ allocates bandwidth to the enhancement layer
according to the static policy �̂ only when the amount of
buffered base-layer data is above threshold qthres. Other-
wise, policy �̂ allocates all of the available bandwidth to
the base layer. Our approach is to allow the server-side
of the application to dynamically determine qthres. To this
end, we suppose that it is desirable to render the entire base
layer without loss. At all times, the server should estimate
whether it is likely that there will be no starvation of the
base-layer prefetch buffer at the client, assuming that the
scheme will henceforth allocate a fraction of the available
bandwidth equal to �̂ to the base layer. The estimate of
the likelihood of no starvation depends on (i) the amount
of base-layer data buffered at the receiver, (ii) the drain
rate of base-layer data, and (iii) a conservative estimate of
future available bandwidth.

To estimate future available bandwidth, we use a
weighted exponential moving average (WEMA) of the past
and current bandwidth observations. We denote the esti-
mate of the average available bandwidth from time s on-
ward by Xavg(s). Given this estimate we determine the
threshold at time s as follows:

qthres(s) = (T � s)rb � �̂(T � s) �Xavg(s);

The above expression represents a conservative choice of
the threshold. It “guarantees” (based on the estimated fu-
ture available bandwidth) that the base-layer buffer will not
be starved during the remaining viewing duration if at any
time s, policy �̂ begins to allocate bandwidth to the en-
hancement layer according to policy �̂. A less conserva-
tive choice for the threshold at time s maintains the no-
starvation condition during the next C seconds: q thres(s) =

C � (rb � �̂ �Xavg(s)). As the value of C decreases in the
above equation, the threshold choice becomes less con-
servative, allowing the server to begin streaming the en-
hancement layer sooner. In order to reduce rapid fluctua-

Trace Rate (% avg. bandwidth) Trace Rate (% avg. bandwidth)
100 % 85 % 75 % 100 % 85 % 75 %

A1 33.90 10.78 3.41 B1 0.07 0.07 0.07
A2 37.08 30.72 30.63 B2 37.36 21.65 3.71
A3 13.78 1.12 1.05 B3 46.95 2.47 0.07
A4 28.87 0.33 0.32 B4 45.85 0.07 0.07
C1 8.18 1.27 0.07 D1 20.00 0.07 0.07
C2 10.10 0.07 0.07 D2 32.98 0.20 0.07
C3 10.90 0.07 0.07 D3 4.78 0.07 0.07

TABLE IV

TIME IN MINUTES (INCLUDING A PLAYBACK DELAY OF 0.07 MINUTES) AFTER WHICH THE ENHANCEMENT LAYER CAN BE PLAYED BACK

WITHOUT LOSS. THE RESULTS ARE FOR THRESHOLD POLICIES WITH NO BASE LAYER LOSS.

�b(t) = 1

Phase 1

Yb(t) � qthres(t) and Ye(t) � q0thres(t)

Phase 2
�b(t) = �̂

Yb(t) < qthres(t) or Ye(t) < q0thres(t)

Fig. 6. State transition diagram for the dynamic threshold heuristic.

tions in quality caused by frequently adding and dropping
the enhancement layer, our heuristic uses an additional
condition for adding the enhancement layer. The second
condition entails adding the enhancement layer only if it
is likely, given the estimated future available bandwidth,
that the enhancement layer can be supported for at least
the next C 0 seconds. We express the latter condition by
defining a threshold for buffered enhancement-layer data,
denoted by q

0

thres, and determined at time s as follows:
q
0

thres(s) = C
0

� (re � (1� �̂) �Xavg(s)).
The server streams the enhancement layer at time s if

the amount of buffered enhancement layer data Ye(s) is
greater that q0thres(s). The add and drop mechanisms uti-
lized by our dynamic threshold heuristic are illustrated in
Figure 6. In phase 1, the streaming policy allocates all
of the available bandwidth to the base layer. In phase 2,
bandwidth is allocated among the layers in proportion to
the consumption rates of the layers.

To implement the above heuristic, the server side of the
application must determine a reasonable prediction inter-
val for future average bandwidth conditions. The length
of the prediction interval determines how often to update
the bandwidth estimate and how often to recompute the
threshold levels. In addition, the application must deter-
mine suitable values for C and C0.

C.1 Trace-driven simulations

We evaluated the performance of the dynamic thresh-
old heuristic in simulations using the fair-share bandwidth
traces. Fig. 7 shows results obtained with trace A1, when
bandwidth estimates and threshold levels are updated each

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

time (sec)

bu
ffe

re
d

da
ta

 (
M

bi
ts

)

Trace A1 −− r=0.7 Mbps −− C=1 sec

base layer
enh. layer
q

thres

0 500 1000 1500 2000 2500
0

50

100

150

200

time (sec)

bu
ffe

re
d

da
ta

 (
M

bi
ts

)

Trace A1 −− r=0.56 Mbps −− C=1 sec

base layer
enh. layer
q

thres

Fig. 7. Buffered data for dynamic threshold policies with C = C
0 = 1

second.

second. C and C0 were both set to one second. Each of the
graphs shows the amount of buffered data in each layer,
as well as the computed threshold level, for different total
consumption rates (in this case qthres(s) = q

0

thres(s)). We
observe that at both consumption rates the base layer is
rendered without loss. When the total consumption rate is
equal to 100% of the average available bandwidth (r = 0:7

Mbps), approximately 25% of the data is lost from the en-
hancement layer. The fraction of enhancement-layer loss
is higher in this case than in the case of the “optimal”
threshold policy when 14% of the data was lost.(Figure 5).
We remark from Fig. 7, however, that the heuristic renders

the enhancement layer for two long and continuous peri-
ods, and avoids the initial rapid fluctuations in quality that
are observed under the threshold policy. This is clearly
seen in Fig. 8, which compares the buffer content under
the threshold policy and under the heuristic during the first
16 minutes of the video, when the consumption rate equals
the average available bandwdith. Furthermore, we observe
from Fig. 7 that the heuristic results in approximately the
same high-qualityviewing time as the threshold policy, de-
livering the enhancement layer without further loss after
the 34th minute into the video.

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

time (sec)

bu
ffe

re
d

da
ta

 (
M

bi
ts

)

Trace A1 −− r=0.7e06 Mbps

base layer
enhanc. layer

100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

6

7

8

9

10

time (sec)

bu
ffe

re
d

da
ta

 (
M

bi
ts

)

Trace A1 −− r = 0.7 Mbps −− C=1 sec

enhanc. layer
q

thres

Fig. 8. Quality flutctuations using the threshold policy and using the

dynamic threshold heuristic (bottom).

We performed similar simulations for the remaining
traces using C = C

0 = 1 second. Again bandwidth es-
timates and threshold levels were updated every second.
Table V summarizes some of our results when the total
consumption rate is equal to 85% of the average available
bandwidth. Each entry in the table indicates the time after
which the enhancement layer can be played back continu-
ously without loss. The results are only marginally differ-
ent from those in Table IV corrsponding to the “optimal”
threshold policy. Thus our heuristic inter-layer allocation
scheme based on conservative bandwidth estimates is reli-
able in avoiding loss of base-layer data, while successfully
adapting to the higher bandwidth conditions.

V. CONCLUSION

We studied schemes for streaming stored CM over fair-
share bandwidth traces. We observed that fair-share band-

Trace Time (min) Trace Time (min)
A1 10.80 B1 0.48
A2 30.72 B2 21.78
A3 1.32 B3 6.23
A4 0.98 B4 5.83
C1 2.60 D1 0.10
C2 0.30 D2 0.38
C3 0.40 D3 0.13

TABLE V

HIGH-QUALITY VIEWING WITH DYNAMIC THRESHOLD HEURISTIC.

width fluctuates significantly over a broad range of time
scales, and that to achieve good performance streaming
schemes must prefetch CM during playback over intervals
that are several minutes long. Additionally, we showed
that layered encoding is desirable for streaming CM over
fair-share bandwidth and that a simple threshold alloca-
tion scheme provides good performance. We developed
a heuristic threshold-based bandwidth allocation scheme
for streaming two layers that is based on conservative es-
timates of average bandwidth conditions. Our empirical
results indicated that such a measurement-based heuristic
attains good performance.

REFERENCES

[1] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion
control in the Internet,” IEEE/ACM Trans. on Networking, vol. 7,
no. 4, pp. 458–472, Aug. 1999.

[2] J. Mahdavi and S. Floyd, “TCP-Friendly Unicast Rate-Based Flow
Control,” Tech. Rep., Jan. 1997.

[3] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic be-
havior of TCP congestion advoidance algorithm,” Computer Com-
munications Review, vol. 27, July 1997.

[4] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,” in
Proc. of ACM SIGCOMM, Sept. 1998.

[5] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven Lay-
ered Multicast,” in Proc. ACM SIGCOMM, Stanford, CA, Aug.
1996.

[6] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, “A model based
tcp-friendly rate control protocol,” in IEEE NOSSDAV’99, Basking
Ridge, NJ, June 1999.

[7] D. Saparilla and K. W. Ross, “Optimal Streaming of Layered
Video,” in Proc. of IEEE Infocom, Tel Aviv, Israel, March 2000.

[8] A. Feldman, A. C. Gilbert, W. Willinger, and T. G. Kurtz, “The
changing nature of network traffic: Scaling phenomena,” Computer
Communication Review, vol. 28, no. 2, Apr. 1998.

[9] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide
Web Traffic - Evidence and Possible Causes,” in Proc. of ACM
Sigmetrics, 1996, pp. 160–169.

[10] V. Paxson and S. Floyd, “Wide Area Traffic: the Failure of Poisson
Modeling,” IEEE/ACM Transactions on Networking, vol. 3, pp.
226–244, 1995.

[11] R. Rejaie, M. Handley, and D. Estrin, “Quality Adaptation for Con-
gestion Controlled Video Playback over the Internet,” in Proc. of
ACM SIGCOMM, Camb., MA, Sept. 1999, number 4, pp. 189–200.

[12] R. Rejaie, M. Handley, and D. Estrin, “RAP: An End-to-End Rate-
Based Congestion Control Mechanism for Realtime Streams in the
Internet,” in Proc. of IEEE INFOCOM, New York, Mar. 1999.

[13] H. Radha, Y. Chen, K. Parthasarathy, and R. Cohen, “Scalable
Internet Video Using MPEG-4,” Signal Processing: Image Com-
munication, vol. 15, pp. 95–126, 1999.

