
Understanding KaZaA
Jian Liang

Department of Computer and
Information Science

Polytechnic University
Brooklyn, NY 11201

Email: jliang@cis.poly.edu
Phone: 1-646-552-6788

Rakesh Kumar
Department of Electrical and

Computer Engineering
Polytechnic University
Brooklyn, NY 11201

Email: rkumar04@utopia.poly.edu
Phone: 1-347-244-5078

Keith W. Ross
Department of Computer and

Information Science
Polytechnic University
Brooklyn, NY 11201

Email: ross@poly.edu
Phone : 1-718-260-3859

Abstract— Both in terms of number of participating users and
in traffic volume, KaZaA is one of the most important applications
in the Internet today. Nevertheless, because KaZaA is proprietary
and uses encryption, little is understood about KaZaA’s protocol,
architecture and signaling traffic. We have built a measurement
platform for collecting and measuring KaZaA’s signaling traffic.
These measurements provide insight on KaZaA’s architecture,
protocol, and overlay behavior. The reader should take away from
this paper a deep understanding of one of the largest distributed
systems ever to be deployed in the Internet.

Keywords: P2P Networks, File Sharing Systems, KaZaA, Topol-
ogy, Traffic Measurement.

I. I NTRODUCTION

On a typical day, KaZaA has more than 3 million active users
sharing over 5,000 terabytes of content. On the University of
Washington campus network in June 2002, KaZaA consumed
approximately 37% of all TCP traffic, which was more than
twice the Web traffic on the same campus at the same time
[4]. Thus, both in terms of number of participating users and in
traffic volume, KaZaA is one of the most important application
in the Internet today.

An understanding of the KaZaA’s protocol, architecture and
signaling traffic is of critical importance for the P2P research
community. With over 3 million satisfied users, KaZaA is
significantly more popular than Napster or Gnutella ever was.
Sandvine estimates that in the US 76% of P2P file sharing traffic
is KaZaA/FastTrack traffic and only 8% is Gnutella traffic [16].
Thus, any new proposal for a P2P file sharing system should be
compared with the KaZaA benchmark. To date, little has been
known about the specifics of the KaZaA design. For example,
the SIGCOMM 2003 paper [8] proposes a new P2P file sharing
architecture, but does not provide a rigorous comparison of
the design with that of KaZaA: “while KaZaA’s appears to
offer better scaling than Gnutella, its design has neither been
documented nor analyzed”.

It is also important for upper- and lower-tier ISPs to ac-
quire a thorough understanding KaZaA traffic. Because KaZaA
generates vast quantities of traffic, networking engineers, who
dimension the network and introduce content distribution de-
vices such as caches, need a basic understanding of how KaZaA
operates. Although there has been recent work in analyzing the
file-sharing workload in KaZaA [4] and [7], little is published
about KaZaA’s protocol or software architecture.

The goal of this paper is to provide the research community
with a deep understanding of how KaZaA operates. Because
KaZaA uses a proprietary protocol with encryption, this is a
daunting task. We have built a measurement platform that has
enabled us to gain significant insights into KaZaA. The paper
focuses on the KaZaA overlay network, search mechanism,
index management system, signaling traffic, and software ar-
chitecture. The paper addresses neither KaZaA’s downloading

protocol (for example, the parallel downloading and queuing)
nor its incentive scheme for encouraging uploaders. The paper
is complementary to [4] and [7], which focus on KaZaA file-
sharing traffic. The reader should obtain from this paper a deep
understanding of one of the largest distributed systems ever to
be deployed in the Internet.

II. OVERVIEW OF KAZAA DESIGN

KaZaA Web site [1] provides a rudimentary description
of how KaZaA works. Moreover, various articles, Web sites,
and message boards provide additional scraps of information.
We begin with an overview of KaZaA overlay network and
search mechanism. This overview combines publicly available
information with some of our own investigations, which are
described in more detail in Section III.

KaZaA resembles Gnutella in that it does not use a dedi-
cated server for tracking and locating content. However, unlike
Gnutella, not all peers are equal. KaZaA has two classes of
peers, Ordinary Nodes (ONs) and Super Nodes (SNs). The
more powerful peers are SNs and have greater responsibilities.
As shown in Fig. 1, each ON is assigned to a SN. When an
ON launches the KaZaA application, the ON establishes a TCP
connection with a SN. The ON then uploads to its SN metadata
for the files it is sharing. This allows the SN to maintain a
database which includes the identifiers of all the files its children
are sharing, metadata about the files, and the corresponding IP
addresses of the ONs holding the files. In this way, each SN
becomes a (mini) Napster-like hub. But in contrast with Napster,
a SN is not a dedicated server (or server farm); instead, it is
typically a peer belonging to an individual user.

One important design lesson learned from the KaZaA exper-
iment is that that large-scale P2P systems should exploit the
heterogeneity of the peers. Peers differ in up times, bandwidth
connectivity, and CPU power. Moreover, some peers are behind
NATs and therefore have restricted file sharing and and database
capabilities. To exploit the heterogeneity, the peers should be
organized in a hierarchy of two or more peers, with the peers in
the higher tiers being more powerful in terms of connectivity,
bandwidth, processing, and non-NATed accessibility.

One important design decision for a two-tier hierarchical
system (such as KaZaA) is whether a SN should only track the
content of its children, or whether it should track the content
its childrenand the content of the children its of neighboring
supernodes. In the latter case, SNs would exchange with each
other the metadata from their children.Our measurement work
has determined that each SN database only keeps records for
files located in its direct children; it doesn’t track the files that
are in ONs under other SNs.However, to our knowledge, there
has been no evaluation of this design choice to date.



SN


ON


ON


ON


ON


ON


ON


ON
ON


ON


SN
SN


SN


ON
 ON


ON


ON


ON


ON


ON


ON


Fig. 1. Supernode and Ordinary nodes in KaZaA network

For each file that it is sharing, the metadata that an ON
uploads to its SN includes: thefile name, the file size, the
ContentHash, and thefile descriptors (for example, artist
name, album name, and text entered by users) [12]. The file
descriptors are used for keyword matches during querying. The
ContentHash plays an important role in the KaZaA architecture.
KaZaA hashes every file to a hash signature, which becomes the
ContentHash of the file. In the most recent version of KaZaA,
ContentHash is the only tag used to identify a file in an HTTP
download request. If a download from a specific peer fails, the
ContentHash enables the KaZaA client to search for the specific
file automatically, without issuing a new keyword query.

When a user wants to find files, the user’s ON sends a
query with keywords over the TCP connection to its SN. For
each match in its database, the SN returns the IP address and
metadata corresponding to the match. Each SN also maintains
long-lived TCP connections with other SNs, creating an overlay
network among the SNs. When a SN receives a query, it may
forward the query to one or more of the SNs to which it is
connected. A given query will in general visit a small subset
of the SNs, and hence will obtain the metadata information
of a small subset of all the ONs.Our measurement work has
determined that SNs often change their SN-to-SN connections
on a time scales of tens of minutes.This shuffling allows a
larger range of the network to be explored, for example, when
searching takes place over hours or days for download lists and
fragments of large files (such as movies).

A KaZaA peer has the following software components:
1) The KaZaA Media Desktop (KMD).
2) Software environment information stored in the Windows

Registry.
3) DBB files, with each DBB file containing metadata for the

files that the peer is willing to share. An active KaZaA
process permanently monitors the local folders that are
shared; file add, delete, is reflected in the DBB file [12].

4) DAT files, with each file containing a partially down-
loaded file. A DAT file grows in size as more data is
retrieved. Once all the file data is retrieved, the DAT file
is renamed to the original file which was intended to be
downloaded.

Our measurement work has determined that each KaZaA peer
exchanges four different types of TCP traffic with other peers
in the network:

1) Signaling traffic, which includes handshaking traffic for
connection establishment between peers; metadata ex-
tracted from the DBB files, uploaded from ONs to SNs;
supernode lists; and queries and replies. All signaling
traffic is encrypted.

2) File transfer traffic (e.g., MP3s, videos, etc.) transferred
directly among the peers without passing through inter-

mediate SNs. File transfers are not encrypted and are sent
within HTTP messages.

3) Commercial advertisements, sent over HTTP.
4) Instant messaging traffic, encoded as Base64.
We have determined that, as part of the signalling traffic,

KaZaA nodes frequently exchange with each other lists of
supernodes. ONs keep a list of up 200 SNs whereas SNs appear
to maintain lists of thousand of SNs. When a peer A (ON or
SN) receives a supernode list from another peer B, peer A will
typically purge some of the entries from its local list and add
entries sent by peer B.By frequently exchanging supernode
lists, nodes maintain up-to-date lists of active SNs. Moreover,
as we shall see in Section 4, these lists are used for building
locality-influenced overlays.

Many users today use KaZaA-Lite [11], an unofficial copy
of KMD, rather than the KaZaA client(KMD) distributed by
Sharman. Each KaZaA-Lite client emulates Sharman’s KMD
and participates in the KaZaA network. During the search
process, a KaZaA-Lite ON first sends its query to the SN to
which it is connected.We have learned from our measurement
work that after receiving all the replies from its parent SN, the
ON often disconnects and connects with a new SN, and resends
the query to the new SN.During a specific search, the ON
may hop to many SNs. The ordinary node typically maintains
the TCP connection with the last SN in the sequence of hops,
until another search is performed.We have learned that during
each hop, the ON resends its metadata to the new SN, and the
previous SN removes the ONs metadata.

One could imagine the following three-step search process:
(1) the system first searches for blocks of metadata that match
the keywords (a file has an associated “block” of metadata);
(2) after receiving the metadata blocks, the user selects for
downloading the file that interests the user the most; (3) the
system uses the ContentHash of the file to locate peers that
contain the file. Note that in this three-step procedure, the search
for ContentHash of the desired file and search for the location of
the desired file are decoupled. In the context of this of three-step
procedure, an important design decision for index management
is whether a SN should continue to cache (for up to some timed
period) the metadata of an ON after an ON disconnects from
it. Caching metadata is particularly compelling in the context
of KaZaA-lite, in which ONs are frequently changing SNs.
However, our investigations have determined that SNs do not
cache metadata when ONs disconnect from them.Furthermore,
in the search process, KaZaA does not use the above three-
step procedure, but instead directly returns nodes which contain
files whose metadata matches the keywords. However, as stated
earlier, when a peer requests a file from another peer, the re-
questing peer identifies the file with the ContentHash; and when
a download from a specific peer fails, the ContentHash enables
the KaZaA client to search for the specific file automatically,
without issuing a new keyword query.

We will describe our measurement Testbed and addi-
tional measurement insights in the next section. We conclude
this section with a brief descriptoin of some other ongo-
ing KaZaA projects. The FastTrack File Format project [12]
has determined the syntax and semantics of KaZaA system
files, including the DBB file, the DAT file, and the Su-
pernode List Cache. The project [12] has also investigated
the KaZaA information that is stored in the Windows Reg-
istry at HKLM\Software\KaZaA\ConnectInfo\KazaaNet. The
Sig2dat tool project [13] makes available a tool for obtaining the
KaZaA ContentHash of any file. This tool is increasingly being
used by KaZaA users, who post file names and corresponding



Fig. 2. Test-Bed Configuration. We show few of the many connections that
test-bed SN has to the rest of the KaZaA P2P network.

ContentHash values on Web sites and message boards. This
helps in countering pollution attacks, wherein bogus files are
intentionally placed in the network by competing interests [15].
Finally, the impressive giFT project [3] has reverse engineered
KaZaA’s encryption algorithms, so that users of giFT-FastTrack
can search and download files form the KaZaA network.

III. M EASUREMENTWORK

As shown in Fig. 2, we built a test-bed consisting of three
workstations, each with a KMD version 2.0 client installed. We
patiently waited until KaZaA promoted one of the three nodes
to a SN. These workstations are connected to the Polytechnic
University campus network. At startup all three workstations
functioned as ONs in the KaZaA network. These workstations
enjoyed high bandwidth connectivity with sufficient hardware
resources. When one of the workstations was promoted to a
SN, we manipulated the Windows Registries in the other two
ONs so that each of the two registries listed only the promoted
SN. In this manner, we forced both ONs to become children of
the SN. The test-bed also connects to the larger KaZaA P2P
network through connections from the test-bed SN to other
SNs and other ONs in the KaZaA network. We then deployed
software traffic monitors to captureall of the traffic inbound
to and outbound from the SN for each of its ON and SN
connections. We then did an offline traffic analysis based on
our understanding of the KaZaA signalling protocol.

We have also developed our own version of a KaZaA client,
which emulates the behavior of the official KMD client for
signalling traffic. We use it to do relevant experiments with the
200-node SN lists sent from a SN to its children. Our client can
fully participate in the FastTrack network; specifically it has the
ability to connect to an arbitrarily specified SN and then retrieve
a SN list from the specified SN.

Admittedly our results may be partially biased since the
measurements were taken from one location. However, we
believe that this location (a university campus in the US) is
a representative location for a KaZaA SN; furthermore, we
performed the experiments on several different days. Thus we
do not expect the bias to be significant.

A. Topology Structure

We first explored the degree of connectivity of a SN. Specif-
ically, from our campus SN node, we studied the number of
simultaneous connections to ONs and to other SNs. Fig. 3
presents measurement results taken on four different days for
different durations. Each graph in Fig. 3 shows the evolution
of the number of simultaneous TCP connections from ONs to
our test SN and from SNs to our test SN. For both the ON and

SN connections, the number of connections begins at one and
climbs to a threshold, around which it subsequently vacillates.
For the number of simultaneous SN-ON connections, depending
on the day, this threshold is in the 100-160 connection range.
Since on a typical day there are roughly 3 million peers,
we therefore speculate that there are on the order of 30,000
supernodes in the KaZaA network at any given moment. We
also observe that for the number of simultaneous SN-SN
connections, depending on the day, the threshold is in the 30-50
connection range. Thus, at any given moment, each supernode
is roughly connected to 0.1% of the total number of supernodes.

B. Topology Dynamics
Our measurement study has determined the KaZaA overlay

is highly dynamic. Although, as observed in Fig. 3, the number
of simultaneous connections vacillates around a threshold, the
individual connections change frequently.

We performed measurements on the duration of ON-SN TCP
connections and SN-SN TCP connections on Oct. 24, 2003.
We monitored over a period of 12 hours a total of 5206 ON
connections and 3850 SN TCP connections to our test-bed
supernode. We plot the distribution of connection lifetime for
these two types of TCP connections in Fig. 4. The average
duration of a ON-SN connection and of a SN-SN connection
are 34.3 mins and 11 mins, respectively. We also observe that
a remarkable 35% of the SN-SN connections lasted for less
than 30 seconds; the percentage is slightly more for the ON-
SN connections. Among connections that last for at least 30
seconds, the average duration of a ON-SN connection and of a
SN-SN connection are 56.6mins and 23.3mins, respectively.

We attribute the large number of short lifetime ON-SN
connections to two factors. First, we have observed that initially
at startup, an ON probes candidate SNs listed in its Supernode
List Cache with UDP packets for possible connections. The ON
then initiates simultaneous TCP connections with the available
SNs in its SN list. Out of these successful connections, the ON
selects one SN as the final choice and it disconnects from other
SNs. Hence,someON-SN connections are short-lived. A second
reason for short-lived ON-SN connections is that many ONs are
KaZaA-Lite clients. As described in the Introduction, KaZaA-
Lite clients hop supernodes during the query process. Each such
hop generates a short-lived connection. We conjecture the short
lifetime of SN-SN connections is due to (1) SNs searching for
other SNs with currently small workloads, and (2) long-term
connection shuffling, to allow users to query a large set of
SNs over long time scales and (3) at times, SNs in the overlay
connect to each other just for the purpose of exchanging SN
list caches.

C. Neighbor selection
One crucial characteristic of the topology is the criteria that

nodes (SNs and ONs) employ to select neighbors. In this section
we describe results from our experiments on determining the
prominent factors influencing neighbor selection in KaZaA P2P
network.

We know that a newly connecting ON receives a list of 200
SNs from its parent SN. As already discussed, this list is a
subset of all the SNs in the parent SN cache. The contents of
this list sent from the SN to the ON influence the ON’s future
decisions about which SNs to connect to; this in turn affects the
overlay topology. As discussed at the beginning of this section,
we use our own version of the KaZaA client to obtain and
analyze these lists.

Based on our measurements, we hypothesize that KaZaA
peers mainly use two criteria for ON-to-SN and SN-to-SN



(a) session evolution, Aug. 22, 2003 (b) session evolution, Aug. 25, 2003

(c) session evolution, Aug 27 (d) session evolution, Oct 24

Fig. 3. Evolution of SN-SN and ON-SN connections with time.

(a) full duration plot (b) close-up of the plot

Fig. 4. Connection lifetime distributions. The graphs on the left are for full duration of trace. The graphs on the right are the corresponding close-ups for shorter
duration which show the distribution more clearly for connections of lower lifetimes.

neighbor selection. One of these criteria issupernode workload.
Each KaZaA ON chooses a parent SN from the local Supernode
List Cache in the Windows Registry. One of the information
fields in this list is the average workload of the supernode
[12]. It is unclear how the value in this field is calculated.
Nevertheless, in our experiments, the KaZaA client displayed
a marked preference for SNs with low value for the workload
field. Fig. 7 illustrates this preference.

The second criteria is based on locality, that is, nodes (both
ONs and SNs) appear to choose overlay neighbors that are
in some sense close. We have performed two experiments to

investigate locality. The first experiment uses Ping to measure
the round-trip time (RTT) from the SN in our testbed to its ON
and SN neighbors. Fig. 6 shows the distribution of the RTT
with respect to the percentage of neighboring SN peers. We
observe that about 60% of the connections between neighboring
SNs have RTT less than 50 msec. It is instructive to compare
these values with some typical RTT values for IP datagrams
on the Internet. Transatlantic traffic between U.S East Coast
and Europe experiences a latency of 100 ms, while the RTT
for traffic between North America and Asia is approximately
180ms [5]. Also it can be observed that almost 40% of the



(a) The child ON IP address is from 128.x.y.z and of parent SN is from
24.a.b.c

(b) The child ON IP address is from 24.a.b.c and of parent SN is from
128.x.y.z

(c) The child ON IP address is from 128.x.y.z and parent SNs are from
213.p.q.r

(d) The child ON IP address is from 24.a.b.c and parent SNs are from
213.p.q.r

Fig. 5. Measuring the characteristics of the IP prefixes on contents of SN lists. The figure shows the percentage of SNs in the SN list received by the child
ON having common IP prefix with the child ON and the parent SN.

ON-SN connections have a RTT less than 5 msec, with the the
other 60% having RTTs more or less uniformly distributed over
hundreds of milliseconds.

The second locality experiment is based on IP prefixes. Recall
that when an ON connects to a parent SN, it receives a SN list.
Our experiments indicate that the SNs in the list have IP prefixes
that tend to correlate with the prefix of the ON. In Fig. 5 we
provide the percentage of SNs in the list having common IP
prefixes with the parent SN and with the connecting child ON
for three different cases. In Fig. 5(a) we connect as an ON from
a 128.x.y.z IP address to a 24.a.b.c SN; then we do the opposite
in Fig. 5(b), connecting as an ON from a 24.a.b.c IP address
to a 128.x.y.z SN. Both the child ON and the parent SN in
these cases are based in United States. In Fig. 5(c) and 5(d) we
connect from the 128.x.y.z and 24.a.b.c ONs respectively to a
parent SN in Sweden with 213.p.q.r IP addresses.

We can see from Fig. 5(a) and Fig. 5(b) that a high percentage
of SNs in the lists have similar IP prefixes as the connecting
ON while this percentage drops slightly in Fig. 5(c). This is
because the SNs based in European countries tend to have less
knowledge of SNs based in the U.S. and thus are not able to
include as large of a percentage of SNs matching the IP prefix of
the connecting child ON. We have also discovered from other
experiments that 24.a.b.c subnet hosts a very high density of
SNs. This is the reason we see SNs even in Sweden reporting a
high percentage of SNs matching the IP prefix of the connecting
ON from 24.a.b.c. We conjecture that the parent SN is going
to include in the SN list as many SNs as it is aware of which

Fig. 6. Round-Trip Time measurement. CDF of RTTs between supernode
neighbors. On X-axis we have RTT values and on Y-axis we have the
corresponding percentage of neighbors who have a RTT value equal to or less
than that value.

have a matching IP prefix with the connecting ON.
Thus it appears that KaZaA takes locality into account when

dynamically creating the overlay network. Although this helps
to confine the KaZaA traffic within nearby ASes, it also means
that the search results tend to be local.

D. Supernode Lifetime

Figure 8 shows distribution of lifetime for 965 unique supern-
odes, monitored over a period of 65 hours. We use UDP probe
packets to track availability of SNs for the experimental period.
From our experiment we determined the average lifetime of a
supernode in the KaZaA overlay to be 149 mins ('2.5hours).



Fig. 7. Preference for Supernodes with less Workload. The top curve shows
the average of the workloads listed for each entry in the supernode cache. The
curve at the bottom shows the average of the workloads of the supernode chosen
by the KaZaA client to be probed.

Fig. 8. CDF as percentage of lifetime of supernodes.965 supernodes were
monitored over 65hrs for their lifetime. The average lifetime was found to be
around 149mins (2.5hrs)

E. Magnitude of Signaling Traffic

Fig. 9 shows the evolution of bit-rate of signaling traffic with
time. We show in the figure the combined bit-rate of upstream
and downstream traffic at the supernode. We deduce from the
collected trace data that the average upstream and downstream
bandwidth consumption for signaling traffic is 161 kbps and
191 kbps, respectively. This gives insights into the amount of
resources needed so that an ON can be promoted to a SN. This
also explains why the majority of supernodes in the KaZaA
overlay belong to the university campus networks or cable home
users but very few from the DSL home users who typically have
less than 128 kbps of upstream bandwidth.

As described in Section II, on joining the KaZaA network,
an ON uploads metadata information contained in the DBB
file to its parent SN. We did experiments to measure the
distribution of the amount of this metadata uploaded to the test-
bed SN from the connected ON sessions. The trace combines
experimental data from a total of 894 ON-SN sessions. Fig.
10 shows the cumulative distribution function of the meta-data
uploaded onto our test-bed SN with respect to the percentage of
ON-SN connections responsible for it. It can be observed from
the plot that 13% of the ON peers are responsible for over
80% of the meta-data uploaded. It is interesting to compare
this data with results reported in [6], wherein on University of
Washington campus, 8.6% of KaZaA peers were serving 80%
of the requests.

IV. SUMMARY

To conclude this paper with a short summary of our findings.
The supernodes form the backbone of the KaZaA network.
There are roughly 30,000 supernodes; the average supernode
lifetime is about 2.5 hours, although these lifetimes greatly vary

Fig. 9. Bit-Rate Evolution of Signalling (combined up-stream and downstream)
Traffic. First 140 mins of the measurement shown in the plot. Samples placed
one second apart. The bursty nature of the traffic is clearly seen.

Fig. 10. CDF of amount of Meta-Data uploaded to a supernode.The amount
of Meta-Data present at supernodes has direct correspondence with the content
available for download in the P2P file-sharing network. Ideally the curve should
be same as of distribution of a uniformly distributed random variable

across supernodes. Each supernode maintains a list of SNs it be-
lieves to be up. The SNs frequently exchange (possibly subsets)
of these lists with each other. Thus, the KaZaA backbone is self-
organizing and is managed with a distributed, but proprietary,
gossip algorithm. SNs establish both short-lived and long-lived
TCP connections with each other. The SNs shuffle the long-
lived connections (with average duration of 23 minutes), which
improves search performance when search is carried out over
long periods (hours) as it is often done in P2P file sharing. Each
SN has about 40-60 connections to other SNs at any given time.
Each SN has about 100 to 200 children ONs at any given time.
Each SN maintains a database, storing the metadata of the files
its children are sharing. SNs do not exchange metadata with
each other.

When a user first acquires a KaZaA or KaZaA-lite client, the
client comes pre-installed with a cache of candidate SNs. When
the client is executed, the client connects with one or more the
SNs in this list and obtains new lists. It appears that the entries
in these lists are biased with locality; the provided SNs are
close to the ON with respect to various locality metrics. When
an ON obtains a new list of SNs, it modifies its own cached list.
Thus the ON-to-SN connections are formed in a decentralized,
distributed manner and appear to take locality into account.

KaZaA has a life of its own, without requiring any inter-
vention from a centralized authority. Unlike Napster, KaZaA
cannot be shut down by simply pulling the plug on a centralized
server farm. Thus, KaZaA will likely persist for the foreseeable
future. Many design decisions taken by the creators of KaZaA
(and KaZaA-lite) seem to be have been done without careful
consideration. We conjecture that there is significant room for
improving the search performance in two-tier unstructured P2P



file sharing systems.

ACKNOWLEDGMENT

We gratefully acknowledge help of ZhongQiang Chen for
valuable feedback and discussions.

REFERENCES

[1] KaZaA Homepage, http://www.kazaa.com
[2] The Gnutella protocol specification v4.0.

http://dss.clip2.com/GnutellaProtocol04.pdf/
[3] A GiFT plugin for FastTrack, http://developer.berlios.de/projects/gift-

fasttrack/
[4] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and

J. Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-Peer
File-Sharing Workload,” Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP-19), October 2003.

[5] http://ipstats.globalcrossing.net/
[6] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy,

“An Analysis of Internet Content Delivery Systems,” Proceedings of the
5th Symposium on Operating Systems Design and Implementation (OSDI
2002), December 2002.

[7] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the Kazaa
Network,” 3rd IEEE Workshop on Internet Applications (WIAPP’03). 2003.
Santa Clara, CA.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker, “Making
Gnutella-like P2P Systems Scalable,” SIGCOMM 2003.

[9] K. Gummadi, S. Saroiu, S. Gribble, “King estimating Latency between
Arbitrary Internet End Hosts,” Proceedings of the SIGCOMM Internet
Measurement Workshop (IMW 2002).

[10] KaZaA Hack 2.5, http://www.kazaahack.net/home.html
[11] KaZaA Lite 2.10, http://www.k-lite.tk/
[12] KaZaA P2P FastTrack File Formats http://home.hetnet.nl/∼frejon55/
[13] Sig2dat tool for FastTrack network,

http://www.geocities.com/vlaibb/tools.html
[14] giFT-FastTrack plugin for giFT, http://giftproject.org
[15] Overpeer Inc, http://www.overpeer.com
[16] Regional characteristics of P2P, http://www.sandvine.com


