
Asynchronous Audio Conferencing on the Web

David A. Turner and Keith W. Ross
Institut Eurécom

BP 193, 06904 Sophia-Antipolis, France
{turner, ross}@eurecom.fr

Published in the proceedings of the International Symposium on Intelligent Media and Distance Education,

August 1999

Abstract

In this paper we discuss the Web as a medium for

hosting asynchronous conferences that allow
participants to leave voice messages in addition to text.
After discussing the advantages of adding audio to the
asynchronous conferencing setting, we describe a
prototype system that we implemented, which relies on
a combination of new Web technologies, including
ActiveX, Java and dynamic HTML. We made special
efforts to keep our implementation free of any special
software installation, and thus allow participants to
begin participating in the conference immediately upon
arrival to the conference site. While the current state
of Web infrastructure supports the submission of text
data from client to server, by the HTML FORM
element or through a Java applet, there does not yet
exist an analogous method for capturing audio data at
the client and deliver it to the server. Our solution
relies on an ActiveX control to provide this missing
functionality, which limits the system's accessibility to
users of Internet Explorer under Windows. We describe
two proposed technologies that would provide
developers with a platform independent means of
capturing audio data and submitting it to a server.

Introduction

Currently, on the Internet, there are a number of

different forms of asynchronous conferencing
techniques. Mailing lists are one form of conferencing
tool, where participants submit e-mail to a central
server, which periodically compiles these comments
into a single message and distributes it to the
participants. News groups are another from of
asynchronous conferencing, where participants place
messages within a message tree. Newsgroups now take
two different forms. There are the traditional
newsgroups, based on the Network News Transfer
Protocol (NNTP) [1], and Web-based newsgroups that
rely on systems such as HyperNews [2], a CGI-based
system in the public domain. The portal sites (Yahoo,

Netscape, etc.) are also beginning to provide
asynchronous conferencing services to their clients.

These asynchronous systems have so far been

based on text messages. In particular, audio has yet to
emerge as a medium for asynchronous conferencing on
the Internet. However, because computer systems with
audio playback and capture capabilities are now
becoming common, it is now feasible to add audio to
asynchronous conferencing. To better understand the
technical issues involved with such development, and
begin experimentation with its use, we developed a
prototype audio-based asynchronous conferencing
system [3].

Adding audio to asynchronous messaging adds a

new dimension of possibility for participants to express
themselves more completely. Although emotion can
be conveyed in text, its expression may be more
complete or easier to achieve when using one's voice.
For example, an asynchronous classroom where
students are reading and discussing poetry would
benefit from the use of voice, because the reader's
voice can convey emotions that might not otherwise be
experienced by a reader. Voice messages also can
provide a more personal feeling that is difficult to
accomplish with text only. Imagine a private
conference set up for the use by a family or group of
friends; in such an environment, listening to the
familiar voices of family or friends may help to evoke
a feeling of closeness, which may be harder to achieve
with text-only messages. In addition to the emotional
and personal dimensions, voice messaging is highly
desirable in the context of an asynchronous classroom
for the instruction of a foreign language. In this
context, students can replay spoken examples to study
the sound and rhythm of the language, and submit their
own responses for correction by the instructor.

In addition to improving the expressiveness of

messages, audio messaging systems can be more
efficient than text-only systems, because message
creation can be done more rapidly. For example, a

speaker of English usually speaks at a rate of about 180
words per minute, whereas the majority of users type
less than 60 words per minute. However, although
message creation is more efficient, message
consumption may be less efficient, because people can
read text more quickly than the rate at which it is
spoken. Also, readers can skim message text in order
to omit content they feel is unimportant. But these
problems are resolvable, because (1) audio messages
can be played back at a faster rate than it was recorded,
and (2) special audio rendering techniques, such as
those used in SpeechSkimmer[4], provide users with
functions that let them "skim" audio in a manner
analogous to how they skim text.

Another advantage to audio messaging is that

many people consider reading text on the computer
screen to be a source of eyestrain, especially when
reading through a long document. While the graphical
user interface of the monitor may be the appropriate
place for the user to process multiple choices presented
in a single instant, many users tire when reading
sequentially presented information, such as a
document. Clicking on hyper links to get to the
information one desires is probably the most efficient
means of navigating through an information space, but
after one has located the information desired, it may be
easier for the user to listen to a document rather than
read it.

Finally, we chose not to consider video at this

time for three reasons. First, the bandwidth required for
transmitting good quality video data is beyond what
many users have available to them through a modem
connection, and so the playback delay may be too
great. Second, the storage requirement for video data
is large, and would therefore consume excessive disk
space on the server. Third, although many multimedia-
equipped computers have microphones, few have video
capture devices. Of course, these factors will
undoubtedly disappear over time, making video
messaging more attractive; but the aim of our
experiment was to implement a system that would be
accessible to as many users as possible and function
reasonably within the present environment.

Design Objectives

The guiding principle that we followed when

designing our prototype system was to make it free of
any special software installation, including going to a
Web site to download and install a plug-in. If the user
has speakers and a microphone connected to her

system, then it should be possible for the user within a
Web browser to follow a link to a conference, and
begin listening to messages and leaving messages of
her own.

We were able to reach this goal within reasonable

limits. The first time the user goes to a conference, she
is presented with a pop-up window asking if she wishes
to accept an ActiveX control, with a valid electronic
signature. If the user clicks OK, the ActiveX control is
loaded and installed. The user is never again
confronted with the same question; any conference he
may go to, at any Web site, will be able to interact
transparently with the installed control.

As a second goal, we wanted the system to be

accessible to as many people as possible, that is, to be
operational in any browser and on any operating
system. Since Java is platform independent, we
naturally considered developing the client side of the
system with a Java applet. However, Java does not yet
provide developers with audio capture functionality.
Such functionality should become available in the
future, when implementations of the JavaSound API
are provided for the various platforms. There is also no
mechanism in HTML that provides for audio capture
and delivery via an HTTP POST to the server, as there
is for text data. There is an Internet draft [5] proposing
an extension to the INPUT element of HTML that
provides this functionality. Another possible solution
is for browsers to support an OBJECT element that
displays audio capture controls, and functions within
the FORM element for submission of its data to the
server. This mechanism is described in the W3C
HTML 4.0 specification [7].

It seems likely that such functionality will
eventually be provided across all platforms either
through the HTML FORM element or through the
OBJECT element.

Because a relatively platform independent

solution was not available, we had to settle with a
platform-specific solution at the client. We chose to
use an ActiveX control to provide the audio capture
and delivery, thus limiting conference access to users
of Internet Explorer running on a Windows operating
system.

The Client Web Page

The standard format of a conference is the

message tree. Messages are either placed on the top
level or under a parent message. Messages are
represented by lines containing message title, author

and other information such as date. These lines are
then presented as a vertical list in which child messages
are indented under their parents. An icon appears to
the left of the message, which when clicked, the list of
the message’s children either appears or disappears
beneath the message. This is the standard interface for
viewing the contents of a hierarchically ordered
collection of objects.

We experimented with a different approach,
which was to present a vertical list centered on a
“selected” message. Above the selected message are
all of its ancestors, and below are all of its children.
We found the interface too confusing, because
messages change their positions within the display
window when selected. However, we feel this
approach still warrants some continued evaluation as a
possible alternative to the expanding branches of a tree.
The reader can see an example of this interface at
http:www.eurecom.fr/~ turner/interface2.html.

Figure 1 : Message tree interface

We thus remained with the conventional tree with

expanding branches. When the user first arrives at a
conference, he sees a list of top-level messages. Each
message is presented as a checkbox, followed by the
message title and the author’s name. When the
checkbox is selected, the children of the message are
displayed, indented, under the message. When the title
of a message is clicked, the message text appears in a
textbox at the bottom of the screen and the system’s
media player retrieves and plays the audio component
of the message (Figure 1). The user controls the
playback of the audio through the playback controls of
the media player.

Under the last child message in each exposed list
is an “add comment” link. The user clicks on this link
to insert a new message at that point in the tree. After
clicking on one of these add comment links, the
message tree disappears and is replaced by a message
creation interface (Figure 2). This new screen includes
textboxes for the user’s name, message title and
message text. In addition to the text input boxes are
audio capture controls in the form of buttons. These
buttons are labeled RECORD, STOP, PLAY and
ERASE. The user clicks RECORD to start audio
capture, STOP to stop capture, PLAY to playback the
contents of the capture buffer, and ERASE to erase the
contents of the capture buffer. He can also click STOP
to stop playback and RECORD to append onto data in
the capture buffer. Once the user is satisfied with his
message, he clicks the SEND button to submit the
message to the conference server. If he decides not to
submit his message, he clicks on the CANCEL button.

Figure 2 : Message creation interface

The transition between the message tree of Figure

1 and the message creation interface of Figure 2 is
done with dynamic HTML, which means that no
interaction with the server is required. Although this
technique provides for an extremely fast user interface,
there is a problem regarding the browser's back button,
which when clicked within the message creation
window will not bring the user back to the message
tree, but to the page from which the conference was
originally entered. This behavior may not be

understood by the user, because the two states of the
unified Web page have the appearance of being two
different Web pages. This problem will exist for all
such Web applications that utilize the document object
model to provide a highly interactive Web page. The
Web page designer may need to provide better clues
than we do in our prototype so that the user perceives
the Web page as a single document, which will be
exited when clicking the back button.

The Conference Server

System-level data is organized under a single

directory: in our implementation we called the
directory aconf. In this top-level directory we place all
of the files which are common to all conferences, and
subdirectories that contains files for specific
conferences. The files in the top-level system directory
include: an ActiveX control in a signed cab file
(Aconf.cab), a Java applet to retrieve conference text
data (AconfApplet.class), a cascading style sheet [6]
used to format the appearance of all conferences
(Aconf.css), a file of JavaScript functions that controls
the Web document, ActiveX control and Java applet
(Aconf.js), and an HTML document that defines the
scrollable text area to appear in the lower frame of the
We page (TextBox.html). Each conference
subdirectory contains the following files: an HTML
document that controls the frame layout of the Web
page (index.html), an HTML document that defines the
elements that appear in the upper frame of the Web
page (msgTree.html), a file containing conference-
specific global JavaScript variables (params.scr), a text
file that contains the text data for all messages in the
conference (data.txt), and the audio files named after
their associated message numbers (1.wav, 2.wav,
3.wav, etc.).

The system requires a Web server, which may at

any time be asked to deliver any one of the files
identified in the previous paragraph. In addition to the
Web server, a conference server (written in Java)
listens for TCP connection requests on some
predetermined port number. This port number is
configured in the JavaScript file Aconf.js. The
conference server’s job is to accept new messages sent
from the client and add them to the public message
tree. It does this in two steps. First, it assigns a
message number to the new message and saves the
audio data as a file with name equal to the message
number. Second, it appends the textual data of the new
message to the conference text data file: data.txt.

Web Page Initialization

The user enters a conference by loading the

index.html file in the conference directory, which
results in an initialization sequence that involves the
loading of various supporting files, the installation of
an ActiveX control, the running of a Java applet, and
the execution of JavaScript that builds the message
tree.

The ActiveX control is referenced with the

HTML <OBJECT> tag as follows:

<OBJECT id="Aconf" classid="CLSID:996F6602-
7895-11d2-8F18-006008644547"
codebase="http://www.eurecom.fr/~turner/aconf/
aconf.cab#Version=1,0,0,4"></OBJECT>

The classid attribute is a 128-bit globally unique

identifier (GUID) that Windows uses to identify
components. When the browser encounters this
element, it searches the system registry to check if a
current version of this object is installed. If it does not
find that a recent version is present, it will retrieve the
cab file and install the control. Then the browser
creates an instance of the component, which it allows
JavaScript to access through the value of the id
attribute.

The JavaScript initialization code is started by

setting the onload attribute of the <BODY> tag, as in
<BODY onload="buildMessageTree()" ...>. This
function adds the HTML elements that comprise the
message tree. Before it starts adding elements,
however, it first calls the loadData() method of the Java
applet to retrieve the text data for the conference,
which it does by issuing a GET request to the Web
server. When this call returns, the script enters a loop
in which it adds two <DIV> sections for each message
in the message tree. The first pair of <DIV> sections
for the first message in the conference will look as
follows:

<DIV id="1" class="0"
 style="padding-left: 20; display:none">
<INPUT type="checkbox" onclick="expand('1')">

 test message 1

 David

</DIV>

<DIV id="r1" class="1"
 style="padding-left: 40; display: none">

<INPUT type="checkbox" disabled>
<SPAN onclick="addComment('1')"
 style="cursor:hand; color:red">
 add comment

</DIV>

The second <DIV> section is used to provide a
link that allows the user to add a comment at the
bottom of the message's list of children. Each time a
message needs to be added to the tree, two new <DIV>
sections for the message are inserted just above the
parent's ending <DIV> section. For more details, see
the source code available at [3].

User Interface

When the initialization script completes in the

client browser, the client will have all of the text data,
including message titles, author names and message
text. However, the audio data will remain at the server.
When the user wishes to listen to a message (and view
its text content), he clicks the message title, which
appears as a link. The message title link for message 1
of the test conference has the following form:

 test message 1

Clicking this link causes the browser to do two

things. First, it executes the JavaScript function
showtext(), which places the message text in the
textbox in the lower frame. Second, it tells the
system's media player to retrieve and render the wave
file referenced in the href attribute. Figure 1 shows one
possible result of clicking on this <A> element.

At present, when retrieving audio files from a

Web server, RealNetwork's G2 player will not render
the audio file in streaming mode, that is, it will wait
until it has retrieved the entire file before beginning
playback. The Microsoft Media Player introduces a
fixed delay (settable by the user) before beginning
playback of the audio file. If the audio playback rate is
greater than the average bandwidth available over the
TCP connection, and the length of the audio message is
long enough, then the player will halt before the
message has finished, while it rebuilds the playback
buffer.

It is possible for these players to calculate an

appropriate playback buffer size based on the average
available bandwidth and file size. The file size is
available from Web servers that include the Content-
Length header in their response messages, which is the
recommended behavior for HTTP 1.1 conformant Web

servers (see §14.14 of [6]). If the encoding rate is
greater than the available bandwidth , then a relatively
large amount of data needs to be buffered prior to
commencing playback in order to avoid buffer
starvation. On the other hand, if the playback rate is
less than the available bandwidth, then the initial size
of the playback buffer only needs to be large enough to
overcome the delay that results from the TCP slow-
start mechanism.

When the user wishes to expand a branch of the

message tree (that is, look at the child messages of a
particular message), she clicks the checkbox next to the
message. Consider the first message of the test
conference example of Figure 1; the checkbox comes
from the following HTML tag:

<INPUT type="checkbox" onclick="expand('1')>

When selected, the browser adds a check mark to

the interior of the checkbox, and calls the JavaScript
function expand() with the message number as its
argument. The expand() function checks to see if the
children of the message currently have the display
attribute of their enclosing <DIV> tags set to “none,”
which makes them invisible, or “block,” which makes
them visible. If it finds that the children are invisible,
it changes their display attributes to “block.” If it finds
that the children are visible, it changes their display
attributes to “none” and also does the same for all
descendents of the children. After performing this
replacement operation, the browser re-renders the
HTML document to reflect the modifications the script
has made to its contents.

If the user wishes to add a message, she clicks on

the "add comment" phrase that occupies the position in
the tree she wishes to insert a new message. The add
comment phrase for adding child messages to message
number 1 is rendered from the following HTML:

<SPAN onclick="addComment('1')"
 style="cursor:hand; color:red">
 add comment

When the user clicks on this text, the

addComment() function is called, which is another one
of the JavaScript functions contained in the script file
msgtree.scr. This function sets the display attribute of
the <DIV> containing the message tree to “none” and
the display attribute of the <DIV> containing the
message creation controls to “block.” This transition
from message tree display to message creation display
(Figure 1 to Figure 2) is practically instantaneous,

because the browser doesn’t need to retrieve any data
over the network.

At this point, the user sees text boxes for a name,

message title and message text. Also, there are buttons
for controlling the audio capture and message
submission. Clicking any of these buttons results in
the execution of a JavaScript function to perform the
task. After the user fills in the name and message title
fields, and optionally the text field, she records a
message. When she is satisfied with the recording, she
clicks on send, which passes execution to the
JavaScript function send(). This function transfers the
text data from the HTML text boxes to the ActiveX
control, and then calls the send() method of the control.
The control establishes a TCP connection with the
conference server and submits the new message, which
is sent as text data followed by the audio data.

Conclusion

We have shown in our prototype that it is possible

to construct a Web-based audio conferencing system
that allows immediate user interaction without
installation complexities. The user is presented only
once with a window asking for permission to install an
ActiveX control. Our approach, however, limits use to
clients with Internet Explorer running under a
Windows operating system.

Presently, it is possible to achieve platform and

browser independence only by providing separate
programming solutions for each targeted environment.
However, when JavaSound becomes available, it will
be possible to redesign the system so that it runs in all
supporting browsers.

Another alternative is to extend the HTML

<INPUT> element to include an audio value for its
type attribute. When confronted with such an element,
the browser would render an audio capture control to
provide the user with a means of inputting audio. This
is analogous to the way the browser renders a textbox
control to allow the user to input text. A proposal for
such an extension is currently in the form of an Internet
draft [Salsman], and thus may eventually be adopted as
a standard and implemented. Such an extension would
eliminate the need for the use of mobile code such as
the ActiveX control used in our prototype, and would
thus increase the security of user systems.

We have also demonstrated that dynamic HTML

can be used to provide a complex Web page interface,

which eliminates the delays associated with a CGI-
style system that requires frequent retrieval of new
HTML documents from the Web server.

Our prototype system relies on a standard Web

server to deliver all of the objects to the client, and
only implements a server component that performs a
single function: to add new messages to a conference.
This conference server component is platform
independent, because it is written in Java.

References

[1] B. Kantor, P. Lapsley, "Network News Transfer
Protocol," Network Working Group, RFC 977,
February 1986; available at
http://info.internet.isi.edu/in-notes/rfc/files/rfc977.txt.

[2] D. LaLiberte, "HyperNews," freeware software,
available at
http://www.hypernews.org/HyperNews/get/hypernews.
html.

[3] D. Turner, W. Ross, Asynchronous Audio
Conferencing, prototype Web application, Oct. 1998,
available at http://www.eurecom.fr/~turner/aconf/.

[4] B. Arons., “SpeechSkimmer: A system for
interactively skimming recorded speech,” ACM
Transactions on Computer-Human Interaction, March
1997.

[5] J. Salsman, "Form-based Device Input and Upload
in HTML," Internet-draft submitted to the W3C HTML
activity for forms, 20 March 1999 (work in progress);
available at http://www.ietf.org/internet-drafts/draft-
salsman-www-device-upload-05.txt.

[6] R. Fielding, et al., "Hypertext Transfer Protocol --
HTTP/1.1," Network Working Group, RFC 2068,
January 1997; available at http://
info.internet.isi.edu/in-notes/rfc/files/rfc2068.txt.

[7] D. Raggett,, A. Le Hors, I. Jacobs, eds., “HTML
4.0 Specification,” W3C Recommendation, 24 April
1998; available at http://www.w3.org/ TR/REC-
html40/.

[8] L. Wood, et al., “Document Object Model (DOM)
Level 1 Specification,” DOM Working Group, W3C
Recommendation, 1 October 1998; available at
http://www.w3.org/TR/REC-DOM-Level-1/.

	Abstract
	Introduction
	Design Objectives
	The Client Web Page
	The Conference Server
	Web Page Initialization
	User Interface
	Conclusion
	References

