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Abstract

The MPEG–4 video coding standard has recently been enriched with Fine Granularity Scalability (FGS)

a new coding technique expressly designed for video streaming. With FGS coding the video stream can be

flexibly truncated at very fine granularity to adapt to the available network resources. In this report we pro-

vide a framework for the evaluation of the streaming of FGS-encoded video. The framework consists of eval-

uation metrics and a library of rate-distortion traces. This framework enables networking researchers with-

out access to video codecs and video sequences to develop and evaluate rate-distortion optimized streaming

mechanisms for FGS-encoded video. We apply our evaluation framework to investigate the rate-distortion

optimized streaming at different video frame aggregation levels. We find that compared to the optimization

for each individual video frame, optimization at the level of video scenes reduces the computational effort

dramatically, while reducing the video quality only very slightly.
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I. INTRODUCTION

Fine Granularity Scalability (FGS) has recently been added to the MPEG-4 video coding standard [1] in

order to increase the flexibility of video streaming. With FGS coding the video is encoded into a base layer

(BL) and one enhancement layer (EL). Similar to conventional scalable video coding, the base layer must be

received completely in order to decode and display a basic quality video. In contrast to conventional scalable

video coding, which requires the reception of complete enhancement layers to improve upon the basic video

quality, with FGS coding the enhancement layer stream can be cut anywhere before transmission. The

received part of the FGS enhancement layer stream can be successfully decoded and improves upon the basic

video quality [2], [3]. Similar to conventional scalable encoding, the FGS enhancement layer is hierarchical

in that “higher” bits require the “lower” bits for successful decoding. This means that when cutting the

enhancement layer bit stream before transmission, the lower part of the bit stream (below the cut) needs to

be transmitted and the higher part (above the cut) can be dropped. The FGS enhancement layer can be cut

at the granularity of bits. This fine granular flexibility was the key design objective of FGS coding, along

with good rate–distortion coding performance. With the fine granularity property, FGS–encoded videos can

flexibly adapt to changes in the available bandwidth in wired and wireless networks. This flexibility can

be exploited by video servers to adapt the streamed video to the available bandwidth in real–time (without

requiring any computationally demanding re–encoding). In addition, the fine granularity property can be

exploited by intermediate network nodes (including base stations in wireless networks) to adapt the video

stream to the currently available downstream bandwidth.

FGS video coding has the potential to fundamentally change the video streaming in networks. With con-

ventionally encoded video the goal of the streaming mechanism is to deliver the complete video stream (or

complete layers) in a timely fashion so as to avoid the loss (starvation) of video data at the decoder. Network

streaming mechanisms for conventional video typically focus on minimizing the loss of video data subject to

the available resources (such as available bandwidth, buffers, start-up latency, etc.). This is very challenging

due to the variabilities in the video traffic (bit rate) and the typically varying bandwidth available for video

streaming. The key performance metric for conventional video streaming is typically the probability (or

long run rate) of lost video data, i.e., data that misses its decoding and playout deadline at the client. This

loss probability is a convenient metric for characterizing the performance of a video streaming mechanism

as it can be obtained from video traffic models or frame size traces and does not require experiments with

actual video codecs and video sequences. However, the loss probability is essentially a “network” metric

and does not provide much quantitative insight into the video quality perceived by the user. Clearly, on a

qualitative basis, a smaller starvation probability results generally in better video quality, but quantifying this

relationship is very difficult without conducting experiments with actual video codecs and video sequences.

This difficulty is due to the fact that conventional video coding is not explicitly designed to tolerate losses.

Thus, the encoder rate–distortion curve, which relates the bit rate at the encoder output to the video quality

obtained by decoding the entire video stream, can not directly be employed to assess the video quality after

lossy network transport. (We note that for conventional scalable encoded video the decoded video quality

can be obtained from the encoder rate-distortion curve at the granularity of complete layers.) Assessing the

video quality is further complicated by the motion compensation and the resulting dependencies among the
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different frame types in MPEG–encoded video. Also, a number of techniques have been developed to attempt

to repair (conceal) losses [4] or to make the encoded video more resilient to losses [5], [6]. All these issues

need to be taken into consideration when assessing the decoded video quality after lossy network transport.

We note that an approximate heuristic that relates the loss of video data to the decoded video quality has been

examined [7], but in general determining the video quality after network transport requires experiments with

actual video, see for instance [8].

In contrast to conventionally coded video, the FGS enhancement layer is designed to be cut (truncated)

anywhere. The received part (below the cut) can be decoded and contributes to the video quality according

the rate–distortion curve of the enhancement layer. More precisely, the received enhancement layer part of a

given video frame contributes to the decoded quality of that frame according to its rate-distortion curve. In

contrast to conventionally encoded video
�����

it is not crucial to deliver the entire enhancement layer stream,

and
�������

the decoded quality corresponding to the received and decoded part of the enhancement layer can

be determined directly from the enhancement layer rate-distortion curve at the granularity of bits. Providing

and analyzing these rate–distortion curves for different videos and explaining their use in networking studies

is the main focus of this report. The provided FGS enhancement layer rate–distortion curves make it possible

to assess the quality of the decoded video after lossy network transport with good accuracy. (We note here

that the subjectively perceived video quality is very complex to assess and the topic of ongoing research;

our evaluation framework allows for complex metrics, but uses the Peak Signal to Noise Ratio (PSNR)

for numerical studies.) With the evaluation framework for FGS video streaming provided in this report it

becomes fairly straightforward to use the video quality as performance metric for video streaming and to

develop rate–distortion optimized streaming mechanisms even if video codecs and video sequences are not

available.

Generally, the goal of rate–distortion optimized streaming [9], [10], [11] is to exploit the rate–distortion

characteristics of the encoded video to maximize the overall video quality at the receiver while meeting the

constraints imposed by the underlying network. The maximization of the overall quality is generally achieved

by maximizing the quality of the individual video frames and by minimizing the variations in quality between

consecutive video frames [11]. (Similar goals, albeit on the much coarser basis of layers, are pursued by the

streaming mechanisms for conventionally layered video that maximize the number of delivered layers and

minimize the changes in the number of completely delivered layers, see for instance [12], [13], [14].) The

optimization of the overall video quality is in general approached by algorithms that take the rate–distortion

functions of all individual video frames into account. With FGS–encoded video the optimization procedure

at the server is to find the optimal number of enhancement layer bits to send for each image, subject to the

bandwidth constraints. We apply our evaluation framework to examine this optimization on the basis of

individual video frames. We find that due to the generally convex shape of the rate–distortion curve of the

FGS enhancement layer the optimization per video frame can be computationally demanding, which may

reduce the number of simultaneous streams that a high–performing server can simultaneously support. We

explore an alternative optimization approach where the server groups several consecutive frames of the video

into sequences and performs rate–distortion optimization over the sequences. In this approach, each frame

within a given sequence is allocated the same number of bits. We demonstrate that by exploiting the strong

correlations in quality between consecutive images, this aggregation approach has the potential to decrease
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the computational requirement of the optimization procedure, and thereby the computational load on video

servers.

This report is organized as follows. In the following subsection we discuss the related work. In Section II

we give a brief overview of FGS video coding. In Section III we present our framework for the evaluation

of FGS video streaming. Our framework consists mainly of
�����

metrics for assessing the traffic and quality

characteristics of FGS video, and
�������

traces of rate–distortion characteristics of FGS–encoded video. We

define metrics based on individual video frames as well as metrics based on aggregations of video frames

(such as Groups of Pictures (GoPs) or visual scenes). We detail our method for generation of rate–distortion

traces. We provide and analyze the traces for a short “Clip” as well as a representative library of long

videos from different genres. Long traces are essential to obtain statistically meaningfully performance

results for video streaming mechanisms. All traces and statistics are made publicly available on our web site

at http://trace.eas.asu.edu/indexfgs.html. Since the rate–distortion characteristics depend

strongly on the semantic video content it is important to consider videos from a representative set of genres.

In Section IV we apply our evaluation framework to compare the rate–distortion optimized streaming for

different video frame aggregation levels. We summarize our findings in Section V.

A. Related Work

Over the past few years, streaming video over the Internet has been the focus of many research efforts

(see [15], [16] for comprehensive surveys). Because of the best–effort nature of the Internet, streaming video

should adapt to the changing network conditions. One of the most popular techniques for network–adaptive

streaming of stored video is using scalable video (see for instance [17], [18]). Video streaming applications

should also adapt to the properties of the particular encoded video [10]. Recently, rate–distortion optimized

streaming algorithms have been proposed (e.g., [9], [19]) to minimize the end–to–end distortion of media,

for transmission over the Internet. Our work complements these studies by providing a framework for the

evaluation of video streaming mechanisms for FGS encoded video.

Significant efforts have gone into the development of the FGS amendment to the MPEG–4 standard, see

for instance [2], [3] for an overview of these efforts. Following standardization, the refinement and evaluation

of the FGS video coding has received considerable interest [20], [21], [22], [23], [24], [25], [26], [27], [28],

[29], [30]. Recently, the streaming of FGS video has been examined in a number of studies, all of which

are complementary to our work. General frameworks for FGS video streaming are discussed in [31], [32],

[33]. The error resilience of FGS video streaming is studied in [11], [34], [35]. In [36] the FGS enhancement

layer bits are assigned to different priority levels, which represent the importance of the carried content.

In [37] a real–time algorithm for the network adaptive streaming of FGS–encoded video is proposed. The

proposed algorithm does not take the rate distortion characteristics of the encoded video into consideration.

The concept of scene–based streaming is briefly introduced in [38], but not evaluated with rate–distortion

data. Streaming mechanisms which allocate the FGS enhancement layer bits over fixed length segments

are studied in [39], [40] and evaluated using the well–known short MPEG test sequences; in contrast, in

Section IV of this report, we study allocation of the FGS enhancement layer bits on individual frame, fixed–

length segment, and video scene basis using our evaluation framework. A packetization and packet drop
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Fig. 1. Example of truncating the FGS enhance-
ment layer before transmission

Bit-plane

VLD


IDCT


VLD

Q
-1
 IDCT


Motion

Compensation


Frame

Memory


Enhancement

Bitstream


Base Layer

Bitstream


Clipping


Clipping


EL

video


BL

video


Fig. 2. MPEG–4 FGS decoder structure: Both layer bit streams are vari-
able length decoded (VLD). In addition, the enhancement layer is bit–plane
decoded and the base layer is inverse quantized (

�����
). Both layers are then

passed through the inverse discrete cosine transform (IDCT).

policy for FGS video streaming is proposed in [41]. An efficient approach for the decoding of streamed FGS

video is proposed in [42]. Finally, streaming of FGS video over multicast [43] and to wireless clients [44],

[45], [46], [47] has also been considered, while issues of FGS complexity scaling and universal media access

are addressed in [48], [49].

This report is in many respects a follow–up of our earlier study on MPEG-4 encoded video [50]. In [50]

we studied the traffic characteristics of single–layer (non–scalable) MPEG–4 and H.263 encoded video for

different video quality levels. The quality level was controlled by the quantization scale of the encoder.

However, neither the video quality nor the relationship between video traffic (rate) and video quality (dis-

tortion) were quantitatively studied in [50]. In the technical report series [51] the video traffic, quality, and

rate–distortion characteristics of video encoded into a single layer and video encoded with the conventional

temporal and spatial scalability modes have been quantitatively studied. In contrast to [50] and [51], in this

report we consider the new fine granularity scalability mode of MPEG–4 and study quantitatively the video

traffic (rate), video quality (distortion), as well as their relationship (rate–distortion) for FGS encoded video.

II. OVERVIEW OF FINE GRANULARITY SCALABILITY (FGS)

Fine Granularity Scalability (FGS) has been introduced in the MPEG–4 standard, specifically for the

transmission of video over the Internet [1]. The unique characteristic of FGS encoding compared with

conventional scalable encoding is that the enhancement layer bit stream can be truncated anywhere and

the remaining part can still be decoded. Figure 1 shows an example of truncating the FGS enhancement layer

before transmission. For each frame, the shaded area in the enhancement layer represents the part of the

FGS enhancement layer which is actually sent by the server to the client. Truncating the FGS enhancement

layer for each frame before transmission allows the server (or intermediate network nodes or gateways) to

adapt the transmission rate finely to changing network conditions. At the client side, the decoder can use the

truncated enhancement layer to enhance the quality of the base layer stream.
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Fig. 3. Example of bit–plane coding

In this report, we focus on the MPEG–4 Signal to Noise Ratio (SNR) Fine Granularity Scalability [2], [52],

where the FGS enhancement layer contains an encoding of the quantization error between the original image

and the corresponding base layer decoded image. Figure 2 illustrates the architecture of the MPEG–4 SNR

FGS decoder. According to the MPEG–4 standard, and as illustrated in the figure, only the base layer frames

are stored in frame memory and used for motion compensation (and predictive encoding using the Intra-

coded, Predicted, and Bi-directionally predicted (I, P, and B) frame types). There is no motion compensation

within the FGS enhancement layer. This makes the enhancement layer highly resilient to transmission errors,

and subsequently well suited to the transmission over error–prone networks such as the best–effort Internet.

A typical scenario for transmitting MPEG–4 FGS encoded videos over the Internet has been proposed by

the MPEG–4 committee in [53]. In this scenario the base layer is transmitted with high reliability (achieved

through appropriate resource allocation and/or channel error correction) and the FGS enhancement layer is

transmitted with low reliability (i.e., in a best effort manner and without error control).

The fine granularity property of the FGS enhancement layer comes from the bit–plane encoding of the

enhancement layer discrete cosine transform coefficients. In digital video each pixel is represented by one

luminance value and two chrominance values. The pixels are grouped into blocks of typically 8x8 pixels.

The 64 luminance values in the block are then quantized and subsequently transformed using the discrete

cosine transform (DCT) to produce a block of 8x8 DCT transform coefficients. (The chrominance values are

processed in similar fashion, but are typically sub–sampled prior to quantization and transformation.) With

conventional single–layer encoding the DCT coefficients are zig–zag scanned and then compressed using

run–level coding. The run–level symbols are then variable–length coded. The base layer of SNR scalable

encoding is obtained by quantizing the original luminance (and chrominance) values and then carrying out

the DCT transform, zig–zag scan, and coding as just outlined. To obtain the enhancement layer of a conven-

tional SNR scalable encoding, the base layer is decoded and the difference (mostly due to the quantization)

between the decoded base layer and the original image is obtained. The difference is then quantized with a

smaller quantization step size and subsequently DCT transformed, zig–zag scanned, and run–level as well

as variable–length coded. (Multiple enhancement layers are obtained by carrying out this encoding of the

differences with successively smaller quantization step sizes.)

The main difference between conventional encoding and FGS encoding is that the DCT coefficients of

the enhancement layer are not run–level encoded in the FGS encoding. Instead the DCT coefficients are

bit–plane coded, which we now illustrate with an example. (Another difference is that there is only one
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enhancement layer with FGS encoding. To obtain this one enhancement layer the difference between the

decoded base layer and the original image is DCT coded without prior quantization.) Consider the 8x8 block

of enhancement layer DCT coefficients in the left part of Fig. 3. The coefficients are scanned in zig–zag order

to give the sequence of 64 integers starting with 7, 0, 5, ����� . Each integer is then represented in the binary

format (e.g., 7 is represented by 111, 3 is represented by 011). The representation for each integer is written

in a vertical column as illustrated in the middle of Fig. 3 to form an array that is 64 columns wide and 3 rows

deep (as the largest integer in this example has a 3 bit binary representation, in practice 8 bit representations

are typically used). The bitplanes are obtained by scanning the rows of the array horizontally. Scanning the

row containing the most significant bit (the top row in the illustration) gives the most significant bit–plane

(MSB). Scanning the row containing the least significant bit (the bottom row in the illustration) gives the least

significant bit–plane (referred to as MSB-2 in this example, or more generally, LSB). Next, each bit–plane is

encoded into
�������
	���
�� �

symbols.
�����

gives the number of consecutive “0”s before a “1”.
��
��

is

set to 0 if there are some “1”s left in the bit–plane, if there is no “1” left in the bit plane then
��
��

is set to

1, as illustrated in Fig. 3. The
��������	���
�� �

symbols are finally variable–length coded.

We close this brief overview of MPEG–4 FGS encoding by noting that the MPEG–4 standard includes

several refinements to the basic SNR FGS approach outlined above and also a temporal scalable FGS mode,

which are beyond the scope of our study. (A streaming mechanism adapting the video by adding and dropping

the SNR FGS and temporal FGS enhancement layers is studied in [54].) We also note that a Progressive FGS

(PFGS) refinement has recently been proposed [11], [30], but not yet standardized. In contrast to MPEG–4

FGS, PFGS allows for partial motion compensation among the FGS bit–planes, while still achieving the fine

granularity property. This motion compensation typically improves the coding efficiency, but lowers the error

resilience of the enhancement layer [16].

III. FRAMEWORK FOR EVALUATING STREAMING MECHANISMS

In this section, we present a framework for evaluating streaming mechanisms for FGS–encoded video.

This framework consists of
�����

definitions of metrics that characterize the traffic and quality on the basis of

individual video frames as well as on the basis of scenes (or more generally any arbitrary aggregation of

video frames), and
�������

rate–distortion traces of a short clip as well as several long videos.

A. Notation

Throughout this report, we use the terms “images” and “video frames” interchangeably. We assume that

the frame period (display time of one video frame) is constant and denote it by � seconds. Let
�

denote the

number of frames in a given video and let � , ����� 	 ����� 	�� , index the individual video frames. Frame � is

supposed to be decoded and displayed at the discrete instant ����� �!� . Suppose the base layer was encoded

with fixed quantization scale, resulting in variable base layer frame sizes (as well as variable enhancement

layer frame sizes). For our evaluation framework we assume that the transmission of each individual variable

size frame is spread out equally over the frame period preceding the actual display frame period, i.e., the

frame is transmitted at a constant bit rate over one frame period such that it arrives just in time for its display.

(This evaluation framework can be adapted to streaming mechanisms that transmit frames ahead of time in a

straightforward fashion.) More formally, let "$#% denote the size of the base layer of frame � (in bit or byte).
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Let " �%�� �����	� denote the size of the complete FGS enhancement layer of frame � , i.e., the enhancement layer

without any cuts. The base layer is transmitted with constant bit rate 
 #% � " #% � � during the period from

��� � �
� � � �!� to ��� � �!� 	 � � � 	 ����� 	�� . Similarly, the complete enhancement layer would be streamed

at the constant bit rate � %�� ������� � " �%�� �����	� � � from � � � ����� � � � to � ����� � . Now, note that, according to

the FGS property, the FGS enhancement layer can be truncated anywhere before (or during) the transmission

through the network. The remaining — actually received — part of the FGS enhancement layer is added to

the reliably transmitted base layer and decoded. We refer to the part of the enhancement layer of a frame that

is actually received and decoded as enhancement layer subframe. More formally, we introduce the following

terminology. We say that the enhancement layer subframe is encoded at rate � % 	���� � % � � %�� ������� , when

the first � % ��� bits of frame � are received and decoded together with the base layer. In other words, the

enhancement layer subframe is said to be encoded with rate � % when the last
� � %�� ������� ��� % � ��� bits have

been cut from the FGS enhancement layer and are not decoded.

For the scene based metrics the video is partitioned into consecutive scenes. Let � denote the total number

of scenes in a given video. Let � , � � � 	 ����� 	 � , denote the scene index and
���

the length (in number

of images) of scene number � . (Note that �������� ��� � � .) All notations that relate to video scenes can

be applied to any arbitrary sequence of successive frames (e.g., GoP). In the remainder of the report, we

explicitly indicate when the notation relates to GoPs rather than to visual scenes.

B. Image-based Metrics

Let  % � � �
, � � � 	 ����� 	�� , denote the quality of the � th decoded image, when the enhancement layer

subframe is encoded with rate � ; for ease of notation we write here and for all image related metrics �
instead of � % . (In our framework we consider a generic abstract quality metric, which could be the frame

PSNR or some other metric. In Sec. III-D we explain how to use the PSNR (and MSE) as an instantiation of

the abstract  % � � �
metric.) Let  �#% �! % ��� � , denote the quality of the same image, when only the base layer

is decoded. We define  �% � � � �" % � � � �� �#% as the improvement (increase) in quality which is achieved

when decoding the enhancement layer subframe encoded with rate � together with the base layer of frame

� .

The mean and sample variance of the image quality, are estimated as:# � � � � ��
$%
% �&�  % � � �!	

(1)

'&() � � � � �� � � $%
% ���+*  % � � � � # � � �-, ( � �� � � .�$%

% ���/*  % � � ��, ( � * # � � ��, (10 � (2)

The coefficient of quality variation is given by:

�3254 ) � � � �
' ) � � �# � � � � (3)

The autocorrelation coefficient of the image qualities 6 ) � � 	87 � for lag
7

,
7 � � 	 ����� 	 � , is estimated as:

6 ) � � 	87 � � �� � 7 $:9<;%
% ��� *  % � � � � # � � ��, � *  %>= ; � � � � # � � �-,' () � � � � (4)
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Let  � � % � � �
, ��� � 	 ����� 	 � , ��� � 	 ����� 	 ��� , denote the quality of the � th decoded image of scene � ,

when the enhancement layer subframe is encoded with rate � . Similar to  % � � �
, we denote  � � % � � � � #� � % �  �� � % � � �

. The mean and sample variance of the qualities of the images within scene � are denoted

by
# � � � �

and ' ()�� � � �
. They are estimated in the same way as the mean and sample variance of individual

image quality over the entire video.

We denote the total size of image � by " % � � � � " #% � " �% � � �
, when the enhancement layer subframe is

encoded with rate � , whereby " �% � � � � � � � .

The key characterization of each FGS encoded frame is the rate–distortion curve of the FGS enhancement

layer. This rate–distortion curve of a given frame � is a plot of the improvement in image quality  �% as

a function of the enhancement layer subframe bitrate � . This rate–distortion curve is very important for

evaluating network streaming mechanisms for FGS encoded video. Suppose that for frame � the streaming

mechanism was able to deliver the enhancement layer subframe at rate � . Then we can read off the corre-

sponding improvement in quality as  �% � � �
from the rate–distortion curve for video frame � . Together with

the base layer quality  #% we obtain the decoded image quality as  % � � � �  #% �  �% � � �
.

In order to be able to compare streaming mechanisms at different aggregation levels, we monitor the

maximum variation in quality between consecutive images within a given scene � , ��� � 	 ����� 	 � , when the

enhancement layer subframes of all images in the considered scene are coded with rate � . We denote this

maximum variation in image quality by 4�� 
 � � � �
:

4�� 
 � � � � � ���
	% � ( ��������� $�� 
��  � � % � � � �  � � % 9 � � � ����� � (5)

We define the average maximum variation in image quality of a video with � scenes as

4��1
 � � � � �� �% ����� 4�� 
 � � � � � (6)

We also define the minimum value of the maximum quality variation of a video with � scenes as

� � � 4��1
 � � � � ��������<��� � 4�� 
 � � � � � (7)

C. Scene–based Metrics

Typically, long videos feature many different scenes composed of successive images with similar visual

characteristics. Following Saw [55], we define a video scene as a sequence of images between two scene

changes, where a scene change is defined as any distinctive difference between two adjacent images. (This

includes changes in motion as well as changes in the visual content.)

In this section we define metrics for studying the quality of long videos scene by scene. We first note that

the mean image quality of a scene,
# � � � �

defined in (1), may not necessarily give an indication of the overall

quality of the scene. This is because the quality of individual images does not measure temporal artifacts,

such as mosquito noise (moving artifacts around edges) or drifts (moving propagation of prediction errors

after transmission). In addition, high variations in quality between successive images within the same scene

may decrease the overall perceptual quality of the scene. For example, a scene with alternating high and
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low quality images may have the same mean image quality as when the scene is rendered with medium but

constant image quality, but the quality perceived by the user is likely to be much lower.

For these reasons we let
� � � � �

denote the overall quality of video scene number � , ����� 	 ����� 	 � , when

the enhancement layer subframes have been coded at rate � for all images of the scene. (This overall quality

is again an abstract quality metric. In Section III-D we explain how to use the average MSE as an instantiation

of this metric.) Similar to the measure of quality of the individual images, we define
� � � � � � � #� � � �� � � �

,

where
� #� � � � ��� �

denotes the overall quality of scene � when only the base layer is decoded, and
� �� � � �

the

improvement in quality achieved by the enhancement layer subframes coded at rate � . We analyze the mean#� � � �
, sample variance ' (� � � �

, coefficient of variation �3254 � � � �
, the minimum to average ratio

������� � #�
,

and the autocorrelation coefficients 6 � � � 	87 � of the scene qualities. These metrics are estimated in analogous

fashion to the corresponding image–based metrics.

Note that our measure for overall scene quality,
� � � � �

, does not account for differences in the length of

the successive scenes. Our analysis with a measure that weighed the scene qualities proportionally to the

scene length gave very similar results as the scene length independent metric
� � � � �

. We consider therefore

the metric
� � � � �

throughout this study. Moreover, it should be noted that the perception of the overall

quality of a scene may not be linearly proportional to the length of the scene, but may also depend on other

factors, such as the scene content (e.g., the quality of a high action scene may have higher importance than

the quality of a very low action scene).

The rate–distortion characteristic of a given scene � is obtained by plotting the curve
� � � � �

, analogous to

the rate–distortion curve of an individual image.

The mean and variance of the scenes’ qualities give an overall indication of the perceived quality of the

entire video. However, the variance of the scene quality does not capture the differences in quality between

successive video scenes, which tend to cause a significant degradation of the perceived overall video quality.

To capture these quality transitions between scenes, we introduce a new metric, called average scene quality

variation, which we define as:

4 � � � � �� � � �% ��� ( � � � � � � � � � 9 � � � ��� � (8)

Also, we define the maximum scene quality variation between two consecutive scenes as:

4 ���
	 � � � � ���
	( �<� � � � � � � � � � � � 9 � � � ��� � (9)

Let
#" � � � �

denotes the mean size of the frames in scene � (
#" � � � � �

�$ � � $��% ��� " � � % ). The correlation

coefficient between the mean frame size
#" � � � �

of a scene and the overall quality
� � � � �

of a scene is

estimated as:

6�� � � � � � � �� � � �% ����� � #" � � � � � #" � � � � � � � � � � � #� � � � �' � � � � � ' � � � �
	

(10)

where
#" � � �

denotes the mean of the successive mean frame sizes of all scenes in the video (
#" � � � �� ����&� #" � � � � � � ). We denote the correlation coefficient between the base layer quality of a scene and the
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aggregate base and enhancement layers quality of a scene by 6 � � � � � � �
. It is estimated the same way as6 � � � � � �

.

Finally, we monitor the length (in video frames) of the successive scenes
� �

, � � � 	 ����� 	 � . We denote

the mean and sample variance of
� �

as
#� � ��� � and ' ($ .

D. MSE and PSNR Measures

The evaluation metrics defined in Sections III-B and III-C are general in that any specific quality metric can

be used for the image quality  % � � �
and the overall scene quality

� � � � �
. In this section we explain how to

use the Peak Signal to Noise Ratio (PSNR) (derived from the Mean Square Error (MSE)) as an instantiation

of these general metrics. The choice of PSNR (MSE) is motivated by the recent Video Quality Expert Group

(VQEG) report [56]. This report describes extensive experiments that compared several different objective

quality measures with subjective quality evaluations (viewing and scoring by humans). It was found that none

of the objective measures (some of them quite sophisticated and computationally demanding) performed

better than the computationally very simple PSNR (MSE) in predicting (matching) the scores assigned by

humans.

For video images of size " ��� pixels, the PSNR of the video sequence between images � � to � ( is

defined by [57]:

PSNR
� � ��	 � ( � � � � �����	� 
 (

MSE
� � � 	 � ( � 	 (11)

where



is the maximum value of a pixel (255 for 8–bit grayscale images), and MSE
� � ��	 � ( � is defined as:

MSE
� � ��	 � ( � � �

" � � � � � ( � � � � � � %��%% � % �

%
� ��� �%

� ���/* � ��� 	�� 	 � � � �� ��� 	�� 	 � ��, ( 	 (12)

where
� ��� 	�� 	 � � and

�� ��� 	�� 	 � � are the gray–level pixel values of the original and decoded frame number � ,

respectively. The PSNR and MSE are well–defined only for luminance values, not for color [58]. Moreover,

as noted in [56], the Human Visual System (HVS) is much more sensitive to the sharpness of the luminance

component than that of the chrominance component. Therefore, we consider only the luminance PSNR.

To use the PSNR as an instantiation of the generic image quality  % � � �
and scene quality

� � � � �
, we set:

 % � � � � PSNR
� � 	 � �!	 (13) � � % � � � � PSNR
� � � � � � � 	 � � � � � � �!	 (14)

� � � � � � PSNR
� � � 	 � � = � � � �!	 (15)

where � ��� 
 � 	 ����� 	 � �
is the absolute frame number of the first frame of scene � , i.e., � � � � � � � 9 �� �&� � � .

Equation (15) assumes that all enhancement layer subframes within scene � are encoded with constant bitrate� . We note again that we use the MSE and PSNR as an instantiation of our general metrics and to fix ideas for

our numerical experiments. Our general evaluation metrics defined in Sections III-B and III-C accommodate

any quality metric [57], e.g., the ANSI metrics motion energy difference and edge energy difference [59] in

a similar manner.



12

We close this section by noting that the above setting for scene quality
� � � � �

uses the average of the

MSEs of the individual images and then transforms this average MSE mathematically to give the PSNR (in

dB). An alternative would be to set the scene quality to the arithmetic average of the PSNRs of the individual

images (i.e., to
# � � � �

). There is the following subtle difference between these two approaches to calculate

the scene quality. The MSE of a given image is the arithmetic average of the distortion between the pixels of

the decoded image and the original image (Eqn. (12) with � � � � ( ). When we consider a sequence of video

frames
� � ( � � � � , the MSE of the video sequence is the arithmetic average of the MSEs for the individual

images of the video (or equivalently, the average of the distortions for all pixels of all frames of the video

sequence). The PSNR of the video sequence is then just a mathematical transformation of the MSE (see

Eqn. (11)), which gives the overall quality of the video sequence in dB. On the other hand, the arithmetic

average of the PSNRs of the individual images of a video sequence (each PSNR value obtained from the

corresponding image MSE) gives the average of the quality for each image, rather than the overall quality

of the video sequence. In practice both approaches give typically very close results (the difference is usually

on the order of 0.1 dB). However, we think that the average MSE approach is more sound and more intuitive

and use it throughout this study.

E. Generation of Traces and Limitations

In our experiments, we used the Microsoft MPEG–4 software encoder/decoder [60] with FGS functional-

ity. We generated our traces according to the following methodology:

1) First, we encode the video using 2 different sets of quantization parameters for the base layer. This

gives compressed base layer bitstreams of high quality (with quantization parameters
��� 	�� 	�� �

for
� � 	 � 	�� �

frames) and low quality (with quantization parameters
� � � 	 � � 	 ��� � ), as well as the associ-

ated enhancement layer bitstreams. The Group of Pictures (GoP) structure of the base layer is set to

IBBPBBPBBPBB. The frame period is � � � �
	 � sec. throughout.

2) We segment the video into � successive scenes. This can be done based on the compressed base

layer bitstream or the source video, according to the segmentation tool which is used. We obtain a

file containing the image numbers delimiting the scenes (scene-nb( � ), last-image-nb( � � ���� � � )).

3) For each base layer quality, we cut the corresponding FGS enhancement layer at the increasing and

equally spaced bitrates � ���
��� 	
� ��� 	

�
��� 	 ����� kbps.

4) For each tuple of compressed bitstreams (base layer quality, enhancement layer substream encoded at

rate � ), we compute the PSNR for each image after decoding, and then the PSNR for each scene.

Finally, for each base layer quality, we obtain the following traces:
� a file containing the base layer statistics for each image number (image-nb( � ), decoding-timestamp( � �
� ), image-type, frame-size( " #% ), PSNR-Y(  �#% ), PSNR-U, PSNR-V),

� a file containing the size of each enhancement layer bit–plane (up to � bit–planes) for each image number

(image-nb( � ), size-of-BP1, ����� , size-of-BP8),
� a file, for each enhancement layer encoding rate � , containing the image quality (in PSNR) obtained

after decoding the base layer and the truncated enhancement layer for all frames (image-nb( � ),
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PSNR-Y(  % � � �
), PSNR-U, PSNR-V).

Note that videos are processed in the YUV format (Y is the luminance component, U and V are color

components of an image).

1) Limitations: Due to a software limitation in the encoder/decoder, some PSNR results (particularly at

some low enhancement layer bitrates) are incoherent (outliers). This has a minor impact for the short videos,

because the trend of the rate–distortion curves for all individual images and video scenes is clear enough to

estimate the quality that will be reached without considering the outliers. However, for the long videos, only

the high quality base layer encoding gave valid results for most enhancement layer bitrates; thus, we only

consider the high base layer quality for long videos.

Also, due to an encoder limitation, we had to encode separately two 30 minute sequences of our 1 hour

videos and then concatenate the traces. For the video News, a few bidirectionally predicted frames at the end

of the sequence are skipped at the encoder, so we repeated the last encoded frame until the original end of

the sequence (this is visible on the base layer traces when the frame–type stays constant for some frames at

the end of a 54000 image sequence). Since this only concerns 4 frames of the videos, we do not expect it to

change the statistical results.

Because the automatic extraction of scene boundaries is still a subject of ongoing research (e.g., [61], [62], [63]),

we restricted the segmentation of the video to the coarser segmentation into shots (also commonly referred to

as scene shots). A shot is the sequence of video frames between two director’s cuts. Since shot segmentation

does not consider other significant changes in the motion or visual content, a shot may contain several dis-

tinct scenes (each in turn delimited by any distinctive difference between two adjacent frames). Nevertheless,

distinct scene shots are still likely to have distinct visual characteristics, so we believe that performing shot–

segmentation instead of a finer scene segmentation does not have a strong effect on the conclusions of our

analysis in Section IV. A finer segmentation would only increase the total number of distinct video scenes,

and increase the correlation between the qualities of the frames in a scene. Many commercial applications

can now detect shot cuts with good efficiency. We used the MyFlix software [64], a MPEG–1 editing soft-

ware which can find cuts directly in MPEG–1 compressed videos. (For the shot segmentation we encoded

each video into MPEG–1, in addition to the FGS MPEG–4 encoding.)

2) Organization of the Web Site: All our traces, together with some statistics, can be found on our public

web site. The site is organized as follows. For each long video encoded at high base layer quality, we have

the following directories:
� stats/, which contains the traces of the bit–plane sizes, the boundaries of the scenes and the total (base

layer and enhancement layer) coding rate by scene and GoP. It also features some overall statistics, such

as statistics for scene length ( � ,
#�

and ' $ ), and the graphs of scene and GoP quality statistics as a func-

tion of the FGS rate (
#� � � �

, ' � � � �
, 4 � � �

, 6 �� � � � � �
, 6 � � � � � � �

) for � � � 	
�
��� 	 � ����� 	 �!�!� 	 � ����� kbps.

Note that for the graphs in this directory, we did not plot the statistics corresponding to the FGS cutting

rates � ���
� � 	�� � � 	

�
���

kbps because of the phenomenon explained in section III-E.1.
� srd/, which contains the rate–distortion trace files for each scene (

� � � � �
).

� q0/ ����� q2000/, which contain, for each FGS cutting rate � � � 	 ����� 	 � ����� kbps, the trace of individual

image quality ( � ,  % � � �
), the graphs of the autocorrelation in scene or GoP quality ( 6 � � � 	87 � ), the
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graph of the scene quality as a function of the scene number and the graph of the GoP quality as a

function of the GoP number (
� � � � �

).

For the short video clip, which is described and analyzed in the next section, we have the following

directories for both high quality base layer and low quality base layer versions of the video:
� stats/, which contains the trace of the bit–plane sizes, the boundaries of the scenes, and the graphs of

image quality mean and variance as a function of the FGS rate for each scene (
# � � � �

, ' ) � � � �
).

� srd/, which contains the rate–distortion trace files for each image (  % � � �
).

� q0/, which contains the trace of the base layer ( � , " #% ,  #% � � �
), and the graphs of quality and frame size

as a function of the image number.

F. Analysis of Traces from a Short Clip

In this section, we present the analysis of a short video clip of 828 frames encoded in the CIF format.

This clip was obtained by concatenating the well–known sequences coastguard, foreman, and table in this

order. We segmented (by hand) the resulting clip into 4 scenes ( � � � � , � ( � 	�� � , � � � �
� � , ����� � 	 � )

corresponding to the 4 shots of the video (the table sequence is composed of 2 shots).
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Fig. 4. Image PSNR �
	 (in dB) as a function of image number � for “Clip”

Figure 4 shows the quality of the successive images  % when only the base layer is decoded and when

FGS enhancement layer subframes of rate � � 	
Mbps are added to the base layer. We make the following

observations for both low and high base layer qualities.
�����

First, the average image quality changes from

one scene to the other for both base layer–only and EL–enhanced streaming.
�������

For a given scene, we see

that for the base layer there are significant differences in the quality for successive images. Most of these dif-

ferences are caused by the different types of base layer images (I, P, B) — the frames with the highest quality

correspond to I–frames. When adding a part of the enhancement layer (at rate � � 	
Mbps in the figure),

we see that these differences are typically still present, but may have changed in magnitude. This suggests

to distinguish between the different types of images in order to study the rate–distortion characteristics of

the FGS enhancement layer.
���������

We notice that scenes 2 and 3 feature high variations of image quality

even for a given frame type within a given scene. Scene 2 corresponds to the foreman sequence in which the
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camera pans from the foreman’s face to the building. A finer scene segmentation than shot–based segmenta-

tion would have segmented scene 2 into two different scenes, since the foreman’s face and the building have

different visual complexities.
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Fig. 5. Size of complete enhancement layer frames �	�	�
 ��
���� and number of bit–planes as a function of image number
� for “Clip”
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Fig. 6. Size of base layer images ���	 as a function of image number � for “Clip”

Figure 5 shows the size of the complete enhancement layer, " �%�� �����	� , and the number of bit–planes needed

to code the enhancement layer of each image. First, we focus on a given scene. We observe that, in general, I

images have fewer bit–planes than P or B images and that the total number of bits for the enhancement layer

images is larger for P and B images than for I images. This is because I images have higher base layer quality.

Therefore, fewer bit–planes and fewer bits are required to code the enhancement layer of I images. For the

same reason, when comparing different high and low base layer qualities, we see that the enhancement layer

corresponding to the high base layer quality needs, for most images, fewer bit–planes than the enhancement

layer corresponding to the low base layer quality. For low base layer quality, the enhancement layer contains,

for most images, 4 bit–planes, whereas, for the high base layer quality, it usually contains 2 bit–planes.

Next, we conduct comparisons across different scenes. Figure 6 shows the size of the base layer frames,
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" #% . When comparing the average size of the enhancement layer frames for the individual scenes (Fig. 5)

with the average size of the corresponding base layer frames (Fig. 6), we see that the larger the average base

layer frame size of a scene the larger the average enhancement layer frame size of the scene. This can be

explained by the different complexities of the scenes. For example, for a given base layer quality, we see

that it requires more bits to code I images in scene 1 than in the first part of scene 2. This means that the

complexity of scene 1 images is higher than the complexity of scene 2. Therefore, the average number of

bits required to code the enhancement layer of scene 1 images is larger than for the first part of scene 2.
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(c) image 14 — low quality base layer
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(d) image 14 — high quality base layer

Fig. 7. Improvement in PSNR � � � 
 ��� and � � � 
 ��� as function of the FGS bitrate � for successive I and B images in scene
1 of “Clip”

In Figure 7 we plot the RD functions  � � � � � � � �
and  � � � � � � � �

(improvement in quality brought by the

enhancement layer as a function of the encoding rate of the FGS enhancement layer) for different types of

images within the same GoP. These plots give rise to a number of interesting observations, which in turn have

important implications for FGS video streaming and its evaluation. First, we observe that the rate–distortion

curves are different for each bit–plane. The rate–distortion curves of the lower (more significant) bit–planes

tend to be almost linear, while the higher (less significant) bit planes are clearly non–linear. (Note that the

most significant bit–plane (BP1) for image 14 with low quality base layer has a very small size.) More

specifically, the rate–distortion curves of the higher bit–planes tend to be convex. In other words, the closer



17

we get to the end of a given bit–plane, the larger the improvement in quality for a fixed amount of additional

bandwidth. This appears to be due to the bit–plane headers. Indeed, the more bits are kept in a given bit–

plane after truncation, the smaller the share of the bit–plane header in the total data for this bit–plane. An

implication of this phenomenon for the design of streaming mechanisms is that it may be worthwhile to

prioritize the enhancement layer cutting toward the end of the bitplanes.

Recall that the plots in Fig. 7 are obtained by cutting the FGS enhancement layer every 200 kbps. We ob-

serve from the plots here that a piecewise linear approximation of the curve using the 200 kbps spaced sample

points gives an accurate characterization of the rate–distortion curve. We also observe that approximating the

rate distortion–curves of individual bit–planes or the entire rate–distortion curve up to the point of saturation

in quality (reached for instance with bitplane 4 in frame 1,13 of low quality base layer) by straight lines (one

for each bitplane) or one straight line for the entire curve gives rise to significant errors which are typically in

the range from 0.5 – 0.75 dB. It is therefore recommended to employ a piecewise linear approximation based

on the 200 kbps spaced sample points. An interesting avenue for future work is to fit analytical functions to

our empirically measured rate–distortion curves.
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Fig. 8. Average image quality by scene
�

��� as a function of the FGS enhancement layer bitrate � for “Clip”

So far we have considered the rate–distortion curves of individual frames. We now aggregate the frames

into scenes and study the rate–distortion characteristics of the individual scenes. Figure 8 shows the average

image quality (from base plus enhancement layer) of the individual scenes in the “Clip” as a function of the

FGS enhancement layer rate. (The outliers at low FGS bitrates are due to the software limitation discussed

in Section III-E.1.) We observe that the scenes differ in their rate–distortion characteristics. For the low

quality base layer version, the PSNR quality of scene 1 (coastguard) is about 2 dB lower than the PSNR

quality of scene 2 (foreman) for almost the entire range of enhancement layer rates. This quality difference

falls to around 1 dB for the high quality base layer video. This appears to be due to the higher level of

motion in coastguard. Encoding this motion requires more bits with MPEG–4 FGS, which has no motion

compensation in the enhancement layer. Overall, the results indicate that it is prudent to
�����

analyze FGS

encoded video on a scene by scene basis (which we do in the next section for long video with many scenes),

and
�������

to take the characteristics of the individual scenes into consideration when streaming FGS video

(which we examine in some more detail in Section IV).
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Fig. 9. Standard deviation of image quality ����� for individual scenes as a function of the FGS bitrate � for “Clip”
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Fig. 10. Standard deviation of image quality �	� and GoP quality ��
 for “Clip”

As noted in the introduction, the perceived video quality depends on the qualities of the individual frames

as well as the variations in quality between successive frames. To examine the quality variations, we plot

in Figure 9 the standard deviation of the image quality ' ) � for the different scenes. For both base layer

qualities, we observe that overall scene 2 (foreman) is the scene with the largest variance. This is due to the

change of the visual complexity within the scene as the camera pans from the foreman’s face to the building

behind him. We also observe that for a given scene, the variance in quality can change considerably with the

FGS enhancement layer rate. To examine the cause for these relatively large and varying standard deviations,

we plot in Figure 10 the standard deviation of both image quality ' ) and GoP quality ' � for the entire video

clip. We see that the standard deviation of the GoP quality is negligible compared to the standard deviation of

the image quality. This indicates that most of the variations in quality are due to variations in image quality

between the different types of images (I, P, and B) within a given GoP. Thus, it is, as already noted above,

reasonable to take the frame type into consideration in the streaming.

To take a yet closer look at the quality variations, we plot in Figure 11 the autocorrelation function 6 ) of

the image quality for the base layer and the FGS enhancement layer coded at rates � � � , � and
	

Mbps.
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Fig. 11. Autocorrelation coefficient of image quality � � for “Clip”

We observe periodic spikes which correspond to the GoP pattern. We verify that, at small lags there are

high correlations (i.e., relatively smooth transitions) in quality for the different types of images, especially

for high FGS enhancement layer rates. This means that the higher FGS enhancement layer rate smoothes

the difference in quality between near images. Indeed, for the same number of FGS enhancement layer bits

added to the base layer, the gain in quality is different for consecutive I, P, and B frames. In general, the gain

in quality for I frames is smaller than the gain in quality for P or B frames: as indicated earlier, the base layer

has higher quality for I frames; so the enhancement layer bits provide higher (less visible) spatial frequencies

for the I frames than for the P and B frames.

G. Analysis of Traces from Long Videos

In this section we analyze the traces of long videos. All videos have been captured and encoded in QCIF

format ( � � � � � �
� pixels), except for the movie Silence of the Lambs which has been captured and encoded

in CIF format (
	��
� � � �
� pixels). All videos have been encoded with high base layer quality. The image

based metrics defined in Section III-B and studied in Section III-F apply in analogous fashion to the long

videos and lead to similar insights as found in Section III-F. In contrast to the short “Clip”, the long videos

contain many different scenes and thus allow for a statistically meaningful analysis at the scene level, which

we give an overview of in this section.

Table I gives the scene shot length characteristics of the long videos along with the elementary base layer

traffic statistics. We observe that the scene lengths differ significantly among the different videos. Toy Story

has shortest scenes, with an average scene length of just about 2.9 seconds (= 88 frames/30 frames per

second). Comparing Oprah with commercials (Oprah
�

comm) with Oprah (same video with commercials

removed), we observe that the commercials significantly reduce the average scene length and increase the

variability of the scene length in the videos. The lecture video, a recording of a class by Prof. M. Reisslein at

ASU has by far the longest average scene length, with the camera pointing to the writing pad or blackboard

for extended periods of time. The scene length can have a significant impact on the required resources

(e.g., client buffer) and the complexity of streaming mechanisms that adapt on a scene by scene basis. (In

Section IV we compare scene by scene based streaming with other streaming mechanisms from a video
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TABLE I
SCENE SHOT LENGTH AND BASE LAYER TRAFFIC CHARACTERISTICS FOR THE LONG VIDEOS

run time
� �� ������� �	��

��� �� ��

� (Mbps)
�

� � (bits) ��������� � ���

� � �� �
The Firm 1h 890 121 0.94 9.36 0.65 21765 0.65 6.52
Oprah+com 1h 621 173 2.46 39.70 2.73 91129 0.14 1.94
Oprah 38mn 320 215 1.83 23.86 1.69 56200 0.19 2.33
News 1h 399 270 1.67 9.72 0.74 24645 0.54 5.30
Star Wars 1h 984 109 1.53 19.28 0.49 16363 0.65 6.97
Silence CIF 30mn 184 292 0.96 6.89 1.74 57989 0.72 7.85
Toy Story 1h 1225 88 0.95 10.74 1.08 36141 0.49 5.72
Football 1h 876 123 2.34 31.47 0.97 32374 0.53 3.90
Lecture 49mn 16 5457 1.62 6.18 1.54 51504 0.29 2.72

TABLE II
SCENE QUALITY STATISTICS OF LONG VIDEOS FOR THE BASE LAYER AND FGS ENHANCEMENT LAYER

SUBSTREAM BITRATES ����� AND � MBPS

BL only ����� Mbps ����� Mbps
��

(dB) ����� 
 � ��� � � �� ��
(dB) ����� 
 � ��� � � �� ��

(dB) �!��� 
 � �"� ��� ��
The Firm 36.76 0.013 0.97 40.10 0.017 0.88 43.70 0.003 0.99
Oprah+com 35.71 0.015 0.99 38.24 0.013 0.99 42.30 0.010 0.99
Oprah 35.38 0.003 1.00 38.18 0.003 1.00 42.84 0.007 0.99
News 36.66 0.018 0.97 39.65 0.027 0.96 43.76 0.021 0.98
Star Wars 37.48 0.025 0.95 41.14 0.031 0.94 43.83 0.013 0.99
Silence CIF 37.88 0.015 0.96 NA NA NA 39.70 0.020 0.96
Toy Story 36.54 0.021 0.97 39.57 0.029 0.97 43.95 0.013 0.97
Football 37.42 0.034 0.95 40.69 0.041 0.94 43.97 0.018 0.99
Lecture 35.54 0.001 1.00 38.48 0.002 1.00 43.64 0.007 0.99

quality perspective.)

The base layer traffic statistics in Table I are quite typical for encodings with a fixed quantization scales

(4,4,4). We include these statistics here for completeness and refer the interested reader to [50] for a detailed

study of these types of traffic traces.

More relevant for the study of FGS–encoded video are the average scene quality statistics in Table II.

Table II indicates that the average scene PSNR is very different from one video to the other. In particular,

while Oprah with commercials and Oprah have the highest base layer encoding rates (see Table I), the average

overall PSNR quality achieved for the base layer for both videos is low compared to the average PSNR quality

achieved by the other videos. This appears to be due to the high motion movie trailers featured in the show

as well as noise from the TV recording, both of which require many bits for encoding. (We note that these

objective PSNR qualities do not necessarily reflect the subjective video quality, but the PSNR is as good

an objective indication of video quality as any other more sophisticated objective metric [56].) We observe

that for a given video, each additional � Mbps of enhancement layer increases the average PSNR by roughly

3–4 dB. (The relatively large bitrate and low PSNR for the Lecture video are due to the relatively noisy copy

(of a copy of a copy) of the master tape.) We also observe from Table II that the standard deviation of the

scene qualities is quite small and the normalized minimum scene quality
� ����� � #�

is very close to � . This is

one reason why we defined the average scene quality variation (8) and maximum scene quality variation (9),
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TABLE III
AVERAGE SCENE QUALITY VARIATION � (IN DB) AND MAXIMUM SCENE QUALITY VARIATION � ��
 � (IN DB) OF

LONG VIDEOS FOR THE BASE LAYER AND FGS BITRATES ����� AND � MBPS

base layer only ��� � Mbps ����� Mbps
� � ��

� � � ��

� � � ��

�

The Firm 0.06 1.83 0.16 2.37 0.00 1.26
Oprah+com 0.04 12.15 0.05 11.31 0.03 7.32
Oprah 0.00 0.36 0.00 0.42 0.00 1.13
News 0.11 3.15 0.29 3.17 0.12 2.36
Star Wars 0.29 8.25 0.57 8.83 0.13 6.28
Silence CIF 0.05 1.42 NA NA 0.25 4.45
Toy Story 0.19 9.77 0.40 11.25 0.12 6.23
Football 0.51 9.79 0.72 10.12 0.19 6.36
Lecture 0.00 0.14 0.00 0.20 0.00 0.64

TABLE IV
SCENE-BASED CORRELATION STATISTICS OF LONG VIDEOS FOR THE BASE LAYER AND FGS BITRATES ��� �

AND � MBPS

base layer only ����� Mbps ����� Mbps
� � 
 
 � 
 � 
 
 � � 
 
 � 
 � 
 
 � � 
 
 � 
 � 
 


The Firm -0.71 1.00 0.00 0.92 0.52 -0.18
Oprah+com -0.20 1.00 0.01 0.99 0.07 0.83
Oprah 0.42 1.00 0.00 084 -0.04 0.48
News -0.66 1.00 0.00 0.83 0.25 0.25
Star Wars -0.47 1.00 -0.02 0.97 0.51 0.67
Silence CIF -0.80 1.00 NA NA 0.00 0.53
Toy Story -0.39 1.00 -0.01 0.98 0.16 0.90
Football -0.54 1.00 -0.02 0.97 0.33 0.81
Lecture -0.14 1.00 0.00 0.52 -0.11 -0.17

which focus more on the quality change from one scene to the next (and which we will examine shortly).

The other point to keep in mind is that these results are obtained for fixed settings of the FGS enhancement

layer rate � . When streaming over a real network, the available bandwidth is typically variable and the

streaming mechanism can exploit the fine granularity property of the FGS enhancement layer to adapt to the

available bandwidth, i.e., the enhancement layer rate � will become a function of time. The challenge for

the streaming mechanism is to adapt the enhancement layer rate � so as to minimize �3254 � and maximize
� ����� � #�

while staying within the available resources (bandwidth, buffer, start–up latency, etc.). The ��254 �
and

� ����� � #�
reported in Table II for constant � are thus useful reference values for evaluating streaming

mechanisms.

In Table III, we first observe that Oprah has the smallest average scene quality variation 4 at all FGS rates,

whereas the Football video has the largest average scene quality variation for the base layer and � � � Mbps.

For most videos, 4 and 4 ���
	 are both minimum at � � � Mbps. We see from 4 ���
	 that the difference

in quality between successive scenes can be as high as � � dB and is typically larger than � dB at all FGS

rates for most videos. This indicates that there are quite significant variations in quality between some of the

successive video scenes, which in turn may very visibly affect the video quality.
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Figures 12 and 13 give, for The Firm and News respectively, the scene quality as a function of the scene

number (
� � � � �

) for the base layer and FGS cutting rates � � � and � Mbps, as well as the average encoding

bitrates for the base layer and the base layer plus complete enhancement layer. The plots illustrate the quite
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significant variations in scene quality for an enhancement layer rate of � = 1 Mbps. For the base layer the

quality variations are less pronounced and for � � � Mbps, the quality is almost constant for most scenes.

With � = 2 Mbps we may have come close to the maximum encoding rate for most scenes (see plot on right),

i.e., most scenes are encoded at close to maximum achievable quality.

Figure 14 shows the average scene quality for The Firm, Oprah, Oprah with commercials and News, as

a function of the FGS rate (
#� � � �

). We observe that the slope of the quality increase with increasing FGS

enhancement layer rate is about the same for all considered videos. We also observe that there is a difference

of around 1 dB between the average base layer quality for The Firm or News and the average base layer

quality for Oprah or Oprah with commercials; this difference roughly remains constant at all FGS rates. This

indicates that the average quality achieved by a video at all FGS rates strongly depends on the visual content

of the videos and on the average quality of the base layer. This is confirmed in Figure 16 which shows the

coefficient of scene correlation between the base layer and the aggregate base and enhancement layer quality
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Fig. 15. Average scene quality variability � as a function
of the FGS enhancement layer rate �

as a function of the FGS rate ( 6 � � � � � � �
). The correlation decreases slightly with the FGS rate but stays high

at all rates (see Table IV for complete statistics for all videos).

Figure 15 shows the average scene quality variation as a function of the FGS rate ( 4 � � �
). As we see, the

difference in quality between the successive scenes first increases with the FGS rate for The Firm and News.

This is probably because, according to the performance of the VBR base layer encoding, some scenes can

achieve maximum quality with a small number of enhancement layer bits (low complexity scenes), while

other scenes require a higher number of bits to achieve maximum quality (high complexity scenes). At

high FGS rates the variability starts to decrease because all scenes tend to reach the maximum quality (as

confirmed in Table III for most videos). For Oprah and Oprah with commercials, the variability stays very

low at all FGS rates, which is mainly due to the fact that the VBR–base layer encoder has been able to smooth

the differences in scene quality quite well.
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Figure 17 shows the coefficient of correlation between the average size and the quality of the scenes

( 6 � � � � � �
). Except for Oprah, the coefficient of correlation is negative for the base layer; this appears to be

due to the base layer encoder allocating more bits to the more complex scenes. Then, as shown in Table IV,

the coefficient of correlation globally increases with the FGS rate and becomes positive for most videos.
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Indeed, for high base layer quality encodings, most of the complexity of the diverse scenes appears to have

been absorbed by the VBR base layer. The Oprah video is a special case: the coefficient of correlation is

already positive for the base layer and then decreases with the FGS rate. In this case, the diversity of scene

complexity seems to have been almost totally absorbed by the base layer, as we have mentioned for Figure 15.

For all videos, a detailed video content based analysis may shed more light on this correlation.
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Fig. 18. Autocorrelation in scene quality � 
 for videos encoded with high quality base layer

Finally, Figure 18 shows, for each video, the autocorrelation in scene quality 6 � for the base layer and

FGS rates � � �
, � , and � Mbps. For the four videos, we observe that the autocorrelation functions drop

off quite rapidly for a lag of a few scene shots, indicating that there is a tendency of abrupt changes in

quality from one scene to the next. Also, for a given video, the autocorrelation function for the aggregate

base and enhancement layers follows closely the autocorrelation function for the base layer only, except for

Oprah with commercials at � � � Mbps. The difference in autocorrelation at low lags between Oprah and

Oprah with commercials can be explained by the higher diversity of successive scene types when adding

commercials.

IV. COMPARISON OF STREAMING OPTIMIZATION AT DIFFERENT AGGREGATION LEVELS

In this section we apply our evaluation framework to compare the rate–distortion optimized streaming of

FGS–encoded video at different levels of image aggregation.
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Fig. 19. The video is partitioned into
�

allocation segments, each consisting of
���

streaming sequences.

A. Problem Formulation

We suppose that the transmission of the base layer is made reliable, and we focus on the streaming of

the enhancement layer. When streaming video over the best–effort Internet, the available bandwidth typi-

cally fluctuates over many time–scales. However, for non real–time applications such as streaming stored

video, the user can usually tolerate an initial build–up delay, during which some initial part of the video is

prefetched into the client before the start of the playback. Maintaining a sufficient playback delay through-

out the rendering allows the application to accommodate future bandwidth variations (see for instance [17],

[18]).

To account for bandwidth variability, we model bandwidth constraints and client buffering resources as

follows. As shown on Figure 19, the video is partitioned into � allocation segments, with each allocation

segment � containing the same number of frames � ��� ��� . While the server is streaming the video, for each

allocation segment � , the server assigns a maximum bandwidth budget
� ���
	 � � ���
	 ��� ��� �	� �!� bits to be

allocated across all the frames in the segment, where the maximum average bit rate � ���
	 varies from one

segment to the next. The values for � ���
	 are determined by a coarse–grain streaming strategy, such as those

given in [17], [37]. In this section, we focus on the fine–grain streaming strategy, namely, the allocation

of the bandwidth budget to the individual frames within a segment. In our experiments, we use allocation

segments consisting of � ��� � frames, which correspond to about
	��

seconds of a
	��

frame/sec video.

Due to the client buffering, the server has great flexibility in allocating the given bandwidth budget to the

frames within a segment. As discussed earlier, given the rate–distortion functions of all images, the server

can optimize the streaming within the segment by allocating bits from the bandwidth budget to the individual

frames so as to maximize the video quality. Alternatively, the server can group several consecutive images

of an allocation segment into sub–segments, referred to as streaming sequences, and perform rate–distortion

optimization on the granularity of streaming sequences. In this case, each frame in a streaming sequence (that

is sub–segment) is allocated the same number of bits. We denote by ��
 the number of streaming sequences

in a given allocation segment � , � � � 	 ����� 	 � .

We consider four aggregation cases for streaming sequences:
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� images — each image from the current allocation segment forms a distinct streaming sequence ( � 
 �
� ��� ��� ).

� GoPs — we group all images from the same GoP into one streaming sequence. In this case, the number

of streaming sequences in allocation segment � is equal to the number of distinct GoPs in the allocation

segment ( � 
 � � ��� � � � � � � � with the 12 image GoP used in this study.
� scenes — we group all images from the same video scene into one streaming sequence. In this case� 
 � � � ����%>�
 , where � � ��� %>�
 denotes the number of distinct scenes in allocation segment � , according to

the initial segmentation of the video (shot–based segmentation in this study).
� constant — allocation segment � is divided into � ��� % � �
 �"� � ����%>�
 streaming sequences, each containing

the same number of frames. Consequently, each streaming sequence contains a number of frames equal

to the average scene length of the allocation segment.
� total — all the images from allocation segment � form one streaming sequence ( ��
 � � ).
In the following, we focus on the streaming of a particular allocation segment � . In order to simplify the

notation, we remove the index � from all notations whenever there is no ambiguity. Let � be the number

of streaming sequences in the current allocation segment. Let
� �

be the number of frames in streaming

sequence � , ��� � 	 ����� 	 � (see Figure 19). For a given allowed average rate � ��� 	 , let �
�

denote the number

of bits allocated to each of the
� �

images in streaming sequence � . Define � � �
�
�!	 ����� 	 � � � as the streaming

policy for the allocation segment. We denote by � ���
	 � � ���
	 � � the maximum number of enhancement

layer bits that can be allocated to any image of the video.

Extending the scene quality metric defined in Section III-C to allocation segments, we define
� �

�
�

as

the overall quality of the current allocation segment under the streaming policy � . We denote
� �

�
�

for the

corresponding total distortion and
� �

�
�

for the total number of bits to stream under this policy. As explained

in Section III-D, the total distortion of a sequence of successive frames is measured in terms of the average

MSE, obtained by averaging the individual frames’ MSEs. The overall quality of a sequence is measured in

terms of the PSNR and computed directly from the average MSE of the sequence. We denote by �
� � % � � �

the

distortion (in terms of MSE) of image � 	 � � � 	 ����� 	 � � , of streaming sequence � , when its enhancement

layer subframes are encoded with � bits. We denote by
� � � � � �

�$ � � $��
� ��� � � � � � � �

, the total distortion of

streaming sequence � when all enhancement layer subframes contain � bits. With these definitions we can

formulate the streaming optimization problem as follows:

For the current allocation segment, a given bandwidth constraint � ���
	 , and a given aggregation case, the

optimization procedure at the server consists of finding the policy ��� � �
���� 	 ����� 	 ���� � that optimizes:

minimize
� �

�
� � �% ����� � �� � $ �% � ��� � � � � � � � � �

subject to:
� �

�
� � � � �	� � � ����� � � � �
� � � � ��� 	 	

�
� �

� ���
	
	 � � � 	 ����� 	 � �

We denote
� � � � �

� �
�

(respectively
�
� ) for the minimum total distortion (maximum overall quality)

achieved for the current allocation segment. Our problem is a resource allocation problem, which can be
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solved by dynamic programming [65]. Dynamic programming is a set of techniques that are used to solve

various decision problems. In a typical decision problem, the system transitions from state to state, according

to the decision taken for each state. Each transition is associated with a profit. The problem is to find the

optimal decisions from the starting state to the ending state of the system, i.e., the decisions that maximize

the total profit, or in our context minimize the average distortion.

The most popular technique to solve such an optimization problem is called recursive fixing. Recursive

fixing recursively evaluates the optimal decisions from the ending state to the starting state of the system.

This is similar to the well–known Dijkstra algorithm which is used to solve shortest–path problems. Another

popular technique is marginal analysis. Basically, marginal analysis starts with a feasible policy and incre-

ments the policy that gives the best profit. In our case, the profit corresponds to the distortion associated with

each policy. Marginal analysis is computationally less demanding than recursive fixing. However it requires

the profit function to be concave. As we observed in Section III-F, the rate-distortion functions of the en-

hancement layer consist of convex segments. Therefore, we need to use the computationally more expensive

recursive fixing.

As we have observed in Figure 7 the rate–distortion curves can not easily be modeled by a simple function.

Therefore, we implemented recursive fixing to resolve our dynamic programming problem by sampling the

possible values of enhancement layer bits per image in steps of �
	
	

bytes ( � �
���

kbit/sec � � � � 	
	 sec
�
� ),

with a maximum of �
���
	 ���

	 	
	
bytes per image. (Recall that our long traces have been obtained by cutting

the enhancement layer bit stream at �
���

kbps,
�1���

kbps, �
���

kbps, ����� , � Mbps. A finer granularity solution

to the optimization problem could be obtained by interpolating the rate-distortion curve between the 200 kbps

spaced points and using a smaller sampling step size in the recursive fixing, which in turn would increase the

required computational effort.)

The computational effort required for resolving our problem depends on the aggregation case which is

considered (image, scene, constant, or total), on the length of an allocation segment, as well as on the number

of scenes within a given allocation segment. Since scene shots are usually composed of tens to thousands

of frames, the reduction in computational complexity when aggregating frames within a shot (scene case) or

aggregating an arbitrary number of frames (constant case) is typically quite significant. For instance, in The

Firm, with an encoding at
	��

frames/sec, there are on average only around � scene shots in one allocation

segment of � ��� � frames.

B. Results

Figure 20 gives plots of the maximum overall quality
�
�
 as a function of the allocation segment number � ,

for an average target rate of � ���
	 � � ����� kbps for The Firm, Oprah, Oprah with commercials and News. Not

surprisingly, for all allocation segments, the overall quality with image–by–image streaming optimization is

higher than that for the other aggregation cases. This is because the image–by–image optimization is finer.

However, the overall quality achieved by the other aggregation cases is very close to that of image–by–image

streaming: the difference is usually less than � dB in PSNR. This is due to the high correlation between the

enhancement layer rate distortion functions of successive frames.

We show in Figure 21 the optimal quality averaged over all allocation segments for the entire videos as
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Fig. 20. Maximum overall quality (PSNR)
����

as a function of allocation sequence number
�

with � ��
 � � ��	
	
	 kbps
( � � � �
� ������	�	
	 frames, fixed)

a function of the target rate constraint � ���
	 . We observe that each of the aggregation cases gives about the

same optimal quality for all target rates. We observed in more extensive experiments, which are not shown

here, that the qualities are very similar when the allocation segments contain more than 1000 frames.

As we have seen from the average MSE based metrics plotted in the previous figures, there seems to be

very little difference between the maximum quality achieved for all allocation segments when aggregating

over scenes or arbitrary sequences. However, the actual perceived quality may be somewhat different. The

reason is that the MSE does not account for temporal effects, such as the variations in quality between con-

secutive images: two sequences with a same average MSE may have different variations in image MSE,

and thus different perceived quality. To illustrate this phenomenon, we monitor the maximum quality vari-

ation between consecutive images 4��1
 � of a given streaming sequence (defined in (5)). For the streaming

sequence � , � � � 	 ����� 	 � 
 , with each enhancement layer subframe encoded with � bits, the maximum varia-

tion is 4��1
 � � � � � � � ���
	 � � ( ��������� $�� 
��  � � � � � � � � �  � � � 9 � � � � � � ���
. For allocations segments of 1000 frames,

Table V shows the average maximum variation in quality 4�� 
 (defined in (6)) for different FGS rates. We

observe that the average maximum variation in quality for a given FGS rate is always smaller with scene

aggregation than with constant or total aggregation. This means that selecting a constant number of bits for
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Fig. 21. Average maximum quality (PSNR)
�� �

as a function of the enhancement layer (cut off) bit rate � ��

� ( � � � � � �
�
� 	
	�	 frames, fixed)

the enhancement layer of all images within a given video shot yields on average a smaller maximum varia-

tion in image quality than selecting a constant number of bits for an arbitrary number of successive images.

Therefore, it is preferable to choose streaming sequences that correspond to visual shots rather than seg-

menting the video arbitrarily. This result is intuitive since frames within a given shot are more likely to have

similar visual complexity, and thus similar rate–distortion characteristics, than frames from different shots.

This is confirmed in Figure 22, which shows the minimum value of the maximum variations in quality over

all scenes of a given allocation segment � � � 4��1
 (defined in (7)). We observe that the min–max variation in

image quality is typically larger for arbitrary segmentation. This indicates that the minimum jump in quality

in the streaming sequences of a given allocation segment is larger for arbitrary segmentation. In the case of

shot segmentation the minimum jumps in quality are smaller; when the shot consists of one homogeneous

video scene, � � � 4��1
 
 is close to 0 dB. As shown in Figure 22, for some allocation segments, the difference

with arbitrary segmentation can be more than � dB.

More generally, we expect the difference in rendered quality between shot–based segmentation and arbi-

trary segmentation to be more pronounced with a scene segmentation that is finer than shot–based segmen-

tation. A finer segmentation would further segment sequences with varying rate–distortion characteristics,



30

TABLE V
AVERAGE MAXIMUM VARIATION IN QUALITY � ��� (IN

DB) FOR LONG VIDEOS

� ��
 � � � 	
	 kbps � ��

� �����
	�	 kbps
scene const. total scene const. total

The Firm 1.84 1.99 2.51 0.81 0.92 1.44
OprahWith 2.64 2.77 2.99 2.68 2.76 2.93
Oprah 2.43 2.47 2.60 2.60 2.64 2.75
News 2.22 2.55 3.71 1.43 1.64 2.89
StarWars 1.90 2.11 3.44 0.85 0.97 1.84
Silence 1.33 1.37 1.82 1.37 1.40 1.88
Toy Story 2.34 2.54 3.54 1.46 1.74 2.96
Football 2.21 2.56 4.92 1.09 1.38 3.49
Lecture 2.64 2.69 2.73 2.06 2.08 2.12

e.g., sequences with changes in motion or visual content other than director’s cuts. This would increase

the correlation between the qualities of the frames in a same scene, which would further reduce the quality

degradation due to scene–based streaming over image–based streaming.

V. CONCLUSIONS

We have developed a framework, consisting of evaluation metric definitions and rate–distortion traces, for

the evaluation of the streaming of FGS–encoded video. The defined evaluation metrics capture the quality of

the received and decoded video both at the level of individual video frames (images) as well as aggregations

of images (GoP, scene, etc). The rate–distortion traces provide the rate–distortion characteristics of the FGS

enhancement layer for a set of long videos from different genres. Together, the defined evaluation metrics

and the rate–distortion traces allow for the accurate evaluation of the quality of streamed FGS–encoded video

without requiring experimentation with actual video.

Our analysis of the rate–distortion traces provides a number of insights that are useful for the design of

streaming mechanisms for FGS–encoded video. First, the convex form of the rate–distortion curves of the

individual bitplanes suggests to prioritize the cutting of the bit stream close to the end of the bit planes.

(Note however that cutting the enhancement layer bit stream only at bit–plane boundaries would provide

coarser grained scalability in adapting video quality to varying network conditions.) Secondly, the base layer

frame types (I, P, and B) and in general the base layer coding tend to have a significant impact on the total

quality obtained from the base layer plus FGS enhancement layer stream. We observed that, for fixed FGS

enhancement layer cut–off rates, significant variations in the base layer quality correspond to significant

variations in the total (base + enhancement layer) quality. This suggests to take the different base layer frame

types into consideration in the streaming of the FGS enhancement layer frames. We also observed that, for

fixed FGS enhancement layer cut–off rates, the total video quality tends to vary according to the different

semantic content of the different video scenes. This suggests to take the scene structure into consideration in

the enhancement layer streaming.

We have illustrated the use of our evaluation framework with an investigation of the rate–distortion op-

timized streaming at different image aggregation levels. We have found that the optimal scene–by–scene
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Fig. 22. Min–max variations in quality ��� � � ��� as a function of the allocation segment number ( � � � �
� �
�
� 	
	�	 frames, fixed)

adjustment of the FGS enhancement layer rate reduces the computational complexity of the optimization sig-

nificantly compared to image–by–image optimization, while having only a very minor impact on the video

quality. We also found that reducing the computational optimization effort by aggregating the images arbi-

trarily (without paying attention to the scene structure) tends to result in significant quality deteriorations.
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