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ABSTRACT

We consider streaming layered video (live and stored) over a
lossy packet network in order to maximize the video quality
that is rendered at the receiver. We propose an end-to—
end framework in which packet scheduling decisions at the
sender explicitly account for the error concealment mecha-
nism at the receiver. We refer to this framework as joint
scheduling and error concealment. We show how the the-
ory of infinite-horizon, average-reward Markov decision pro-
cesses with average—cost constraints can be applied to the
joint scheduling and error concealment problem. The for-
mulation allows for a wide variety of performance metrics,
including metrics that take quality variation into account.
We demonstrate the framework and solution procedure us-

ing MPEG-4 FGS video traces.

1. INTRODUCTION

In this paper we consider streaming layered video over a
lossy packet network in order to maximize the video quality
that is rendered at the receiver. We propose an end—to—
end framework in which packet scheduling decisions at the
sender explicitly account for the error concealment mecha-
nism at the receiver. We refer to this framework as joint
scheduling and error concealment.

In many packet network environments, including the Inter-
net, the bandwidth available to a streaming application is
not known a priori and varies throughout the streaming ap-
plication. For such network environments, layered encoded
video is appropriate [10, 12, 17, 18, 22]. The video is en-
coded into a Base Layer (BL) and a number of enhancement
layers (ELs). The decoded BL provides minimal rendered
quality; additional decoded ELs progressively enhance the
rendered quality.

In a typical streaming application, the sender dynamically
schedules the transmission of media packets as a function of
available bandwidth in order to maximize the rendered video
quality. The sender may choose not to transmit some media
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packets, thereby not sending some layers in some frames.
In general, the scheduling may also include the retransmis-
sion of lost packets that can arrive at the receiver before
their decoding deadlines. At the receiver, some of the me-
dia packets are available on time, that is, before their de-
coding deadlines. Other packets are not be available, either
because they were transmitted and lost, or simply because
the sender never scheduled them for transmission. At the
time of rendering to the user, the decoder typically applies
several methods of error concealment in order to best con-
ceal the missing packets. Error Concealment (EC) consists
in exploiting the spatial and temporal correlations of audio
or video to interpolate missing packets from the surround-
ing available packets [21]. For video, a simple and pop-
ular method for temporal error concealment is to display,
instead of the missing macro block from the current frame,
the macro block at the same spatial location but from the
previous frame.

Packet scheduling and error concealment are two fundamen-
tal components in an end to end video streaming system.
Figure 1 illustrates their respective functions. At the sender,
the scheduler determines the layers that should be sent to
the receiver. At the receiver, before rendering the media, the
decoder performs error concealment from the available lay-
ers. Traditionally, packet scheduling and error concealment
are designed independently without considering any inter-
play between the two. In particular, the scheduling policy
is normally optimized without taking into account the pres-
ence of error concealment at the receiver [6, 15, 16].

In this paper, we argue that the scheduling and error con-
cealment components of a video streaming system should be
designed jointly and not separately. In particular, when de-
signing a scheduling policy, not only should we account for
the layered structure of the media, the channel character-
istics, and the effects of missing packets on distortion, but
we should also explicitly account for error concealment at
the receiver. Thus, we argue for a more unified, end to end
approach for designing video streaming systems.

This paper has two main contributions. First, we present
a new optimization framework for joint packet scheduling
and temporal error concealment. Using MPEG—4 FGS video
traces, we compare joint scheduling and error concealment
to “disjoint” scheduling and error concealment:
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Figure 1: Video streaming system

e Disjoint Scheduling and Error Concealment (Dis-
joint S+EC): The sender determines and employs
the optimal scheduling policy, which is obtained with-
out accounting for error concealment at the receiver.
The receiver nevertheless applies error concealment be-
fore rendering the video.

Joint Scheduling and Error Concealment (Joint
S+EC): The sender determines and employs the op-
timal scheduling policy, which accounts for error con-
cealment. The receiver applies error concealment be-
fore rendering the video.

It is important to note that both schemes employ EC, so
that when comparing the rendered video quality of the two
schemes, we are indeed making a fair comparison. We show
that for the same bandwidth, Joint S+EC can significantly
improve video quality over Disjoint S+EC. (Conversely, it
can be shown that with Joint S+EC, the streaming applica-
tion can achieve the same overall video quality as Disjoint

S+EC but with significantly less bandwidth.)

Our second main contribution is to show how the theory of
infinite—horizon, average-reward Markov Decision Processes
(MDPs) with average cost constraints can be applied to the
joint scheduling and error concealment problem. To our
knowledge, infinite horizon constrained MDPs have not been
applied yet to video streaming. We show how constrained
MDPs can be used for a wide variety of quality metrics, in-
cluding metrics which take quality variation into account.
We also show that for streaming applications with small
playout delays (such as live streaming), the constrained MDP
approach is computationally tractable, providing optimal
scheduling policies for the Joint S+EC scheme.

This paper is organized as follows. We conclude this section
with a discussion of related work. In Section 2, we illustrate
the potential benefits of Joint S+EC. In Section 3, we in-
troduce a novel optimization framework for Joint S+EC. In
Section 4, we show how constrained MDPs can be applied
to the optimal Joint S+EC problem. We provide several
numerical examples which show that Joint S+EC can pro-
vide significant improvements in performance over Disjoint
S+EC. In Section 5, we consider a modified version of the
problem, in which there is an additional constraint on qual-
ity variability. In Section 6, we provide simulation results
for MPEG-4 FGS video traces, which confirm the benefits of
Joint S+EC over Disjoint S+EC. We conclude in Section 7.
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Figure 2: Example of expected distortion values for
a video encoded with 3 layers.

1.1 Related Work

To our knowledge, the most closely related work to this pa-
per is the work of Chou and Miao [5, 6] which considers rate

distortion optimized streaming. Chou and Miao consider
scheduling packetized media over a packet erasure channel in
order to minimize an additive combination of distortion and
average rate. The series of papers makes a number of contri-
butions, both in developing a novel optimization framework,
and applying the framework to a variety of packet network
models. The most important difference between their work
and ours is that Chou and Miao do not consider error con-
cealment in their optimization framework. We introduce
the joint scheduling and error concealment problem. Also,
Chou and Miao develop a heuristic algorithm for finding a
sub—optimal scheduling policy, whose performance may be
significantly below the truly optimal scheduling policy. Our
constrained MDP approach provides a tractable means for
determining the truly optimal Joint S+EC policy. (However,
the framework of Chou and Miao allows for retransmissions,
whereas we suppose no retransmissions.) Finally, the frame-
work provided in this paper can handle quality variability
metrics, and can be extended to handle error correction with

FEC.

Other works on optimal scheduling of media using a feed-
back channel include [16, 20]. These works do not consider
error concealment. Podolsky et al. [16] study optimal re-
transmission strategies of scalable media. Their analysis is
based on Markov chains with a state space that grows ex-
ponentially with the number of layers. Servetto [20] studies
scheduling of complete GOPs encoded in multiple descrip-
tion codes. The sender adapts the number of descriptions
sent to the receiver, as a function of the network state which

is modeled as a HMM.

2. BENEFITS OF JOINT S+EC

In this section we provide a simple example to highlight the
benefits of joint scheduling and error concealment. Consider
a video segment composed of five frames, each of which is
encoded into three layers. We suppose in this example that
each frame is independently encoded. The only dependen-
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Figure 3: Example of scheduling policies transmit-
ting 9 packets.

cies are due to layered encoding, i.e., a given layer of a video
frame needs all the lower layers of the same frame to be de-
coded. We suppose that each layer fits exactly into one
packet, all packets are the same size, and all frames have
the same rate—distortion functions.

On the left of Figure 2, we give the distortion values for each
frame, as a function of the number of layers which are avail-
able for the frame. These are distortion values expected by
the sender without considering temporal EC at the receiver.
On the right of Figure 2, we show the distortion values for
frame n when EC from the previous frame n — 1 is used.
These are the distortion values which are actually obtained
after decoding.

Figure 3 shows four possible scheduling policies at the sender
(A, B, C, and D), when we require that each policy send ex-
actly nine packets. Initially, suppose that there is no packet
loss. For each scheduling policy, we give the total distortion
with and without EC. Now consider the optimal Disjoint
S+EC policy and the optimal Joint S+EC policy. The opti-
mal Disjoint S+EC policy is policy B, which minimizes the
distortion at the receiver without taking EC into account.
After applying error concealment to policy B, the resulting
distortion is 6. Hence, the optimal Disjoint S+EC policy
has a distortion of 6. But the optimal Joint S+EC policy is
policy A, which has a lower rendered distortion than policy

B.

3. PROBLEM FORMULATION

In this paper, we consider video streaming, live or stored.
The video at the sender is encoded into L layers of constant
size. Recall that the main property of layered—encoded video
is that layer ! of a given frame can not be decoded unless all
lower layers 1,...,l — 1 are also available at the decoder.

We suppose that the video contains N frames, and that its
L layers are not motion compensated, i.e., the decoding of
layer 1 of frame n does not depend on the decoding of previ-
ous frames n—1, ... (this is the case for the FGS-EL defined
in the MPEG—4 standard [1]). Also, we suppose that the ad-
ditional quality brought by a given layer is roughly constant

for all frames of the video (i.e., layer I of frame n brings
roughly the same amount of quality to frame n than layer
! of frame n + 1 to frame n + 1). More generally, for long
videos containing multiple scenes with different visual char-
acteristics, the quality brought by a layer is likely to vary
significantly for different parts of the video [9]. In this case,
we suppose that the video has been previously segmented
into homogeneous segments of video frames, such that the
quality brought by each layer is roughly constant throughout
the segment. Therefore, in this study, we consider a single
homogeneous segment containing N frames. In the case of
longer videos, we would apply our optimization framework
to each separate segment.

Throughout this paper, we suppose that the transmission
channel is a packet erasure channel with instant feedback.
The channel has a probability of success of g. We do not con-
sider channel error correction, such as Forward Error Cor-
rection (FEC) or selective retransmissions. However, our
framework can accommodate FEC codes as additional lay-
ers (this will be the subject of future work).

At the decoder, we suppose that, in order to conceal loss of
packets for frame number n, only information from previous
frame n — 1 is used. However, information from frame n —
1 does not necessarily fully conceal loss of packets from
frame n. Note that, in practice, information from a set
of consecutive previous frames, and even from subsequent
frames, can also be used to perform error concealment for
the current frame at the decoder. This has the potential
to increase the accuracy in predicting any missing packet,
but at the cost of an increase in run—time complexity of the
decoder [21]. The theory presented here can be extended to
handle these more sophisticated forms of error concealment;
in order to see the forest through the trees, throughout we
focus on only using the previous frame in error concealment.

For a given scheduling policy o, let rateq,q(o) denote the
average transmission rate for the video, which is in units
of number of transmitted layers. Let dista,,g(a) denote the
average distortion of the rendered video after error conceal-
ment. A typical problem formulation of rate—distortion op-
timized streaming is the following [6, 22]:

PrOBLEM 1. Find an optimal scheduling policy o which
minimizes distavg(o) subject to rateavg(o) < a,

where a is the maximum transmission rate which is allowed
by the network connection, or alternatively, the rate budget
which is allocated to the streaming.

It may be misleading to solely use average image distortion,
usually expressed in terms of average MSE (Mean Squared
Error), to account for the quality of the rendered video.
First, the average image distortion does not measure tem-
poral artifacts, such as mosquito noise (moving artifacts
around edges) or drifts (moving propagation of prediction
errors after transmission). Second, high variations in qual-
ity between successive images may decrease the overall per-
ceptual quality of the video.  Therefore, the formulation
of our problem should incorporate additional quality con-
straints. In this paper, we treat as an example the case



of variations in quality between consecutive images. For a
given scheduling policy o, let varavg(o) denote the average
variation in distortion between two consecutive images. We
can now formulate the following problem:

PRrROBLEM 2. Find an optimal scheduling policy o which
minimizes distayg(o) subject to rateavg(c) <a  and
Uaravg(a) <7,

where v is the maximum average variation in distortion
which is allowed. (Its value can be found from subjective
tests.)

Let £ :={0,1,...,L}. Let A, € £ denote the scheduling
action that the sender takes for frame n, i.e., the number of
successive layers to send to the receiver for frame n. Note
that transmitting layer ! of a given frame without transmit-
ting layer I — 1 of that frame makes little sense. Indeed,
layer ! will never be decoded if the sender has not sent layer
l—1. Let X,, € L denote the state at the receiver for previ-
ous frame n — 1, i.e., the number of successive layers which
are available at the decoder for frame n — 1.  The order
of succeeding actions and states is X,_1, Ap—1, Xn, An,....
Let D,, denote the distortion of frame n after decoding.

Throughout this paper we suppose that the sender can ob-
serve X, when choosing the action A,,. This implies a feed-
back channel from receiver to sender with a RTT that is
less than one frame time. The model can also be extended
to handle delayed feedback, which will be the subject of a
future paper. Also, our system does not allow for retrans-
mission of lost packets. This is a reasonable assumption for
live streaming. It is also reasonable for stored video systems
with short playback delays and high VCR-like interactivity.

We denote by d;, the distortion of a frame containing only
the first ! layers before temporal EC. (Without loss of gen-
erality, we take d;, = 0 and do = 1.) We have d; < dr—1 <
---<dy < dy. For 0 <1,5 <L, we denote by d;; the dis-
tortion of a frame after temporal error concealment, when 3
layers of the previous frame and j layers of the current frame
were received by the decoder. Whenever 1 < 3, the decoder
cannot conceal lost layers of the current frame from the pre-
vious frame, therefore d;; = d;. We denote by distortion
matriz, matrix [di;lo<i j<L-

In our system, we suppose that the sender knows the distor-
tion matrix of the current video segment. When streaming
stored video, the distortion matrix can be computed off-
line from the original uncompressed video segment. It can
be stored at the sender, together with the video file. When
streaming live video, the sender needs to estimate the value
of the distortion matrix before starting the encoding and
transmission of the current video segment. This estimate
can be based on the previous video segments which have
been encoded and already sent to the receivers. Since in
most applications of live video streaming, such as streaming
of sport events or videoconferencing, the consecutive video
segments have usually recurrent or similar characteristics,
we expect that the estimation of the distortion matrix of an
upcoming segment can be made sufficiently accurate.

4. JOINT S+EC OPTIMIZATION

In this section we study Problem 1. We show that Prob-
lem 1 can be formulated as a constrained MDP, which can
in turn be solved by linear programming [11, 13]. The prob-
lem is naturally formulated as a finite-horizon MDP with N
steps, where N is the number of frames in a video segment.
However, the computational effort associated with a finite
horizon MDP can be costly when N is large [3]. This may
be a serious impediment for real-time senders. Therefore,
we instead use infinite—horizon constrained MDPs. They
have optimal stationary policies and have lower computa-
tional cost. The infinite horizon assumption corresponds
to considering infinite-length video segments (N = oo).
Throughout this study, the values rateavg(o), distortavg(o)
and vargyg(o) will be long—run averages.

4.1 Analysis
We consider the Markov Decision Process { X, Ap,n =0,...}.
We define the reward associated with action A,, when the
receiver state is X, as:

7"(XW7A")= _E[D"|X"7A"]7 (1)
and the cost of choosing action A,, at transmission slot n as:

cn(Xn, An) = An. (2)

From these definitions, and given that E[rn(Xn, As)] =
—E[Dy], Problem 1 can be rewritten as finding an optimal
policy ¢* which maximizes the long—run average reward:

n n

1 1
Jim EEG[Z rn(Xom, Am)] st im —Eo[ Y~ cm(Xm, Am)] < @,

n—oo N
m=1 m=1

(3)

which falls into the general theory of constrained MDPs.

We can calculate the reward and cost as follows:

raina) = ~(1— @)Y dise?) — diag® ()

cnli,a) =a (5)

For a randomized stationary policy o, let 0ia = Ps(An =
al X, = 1). We denote by Piaj = P(Xmy1 = j|Xm =
i, Am = a) for the law of motion of the MDP. It is given
by:

0 whenever 7 > a
Piaj =< q" when j =a (6)
¢’(1—gq) otherwise.

This MDP is clearly a unichain MDP [11, 19]. It therefore
follows that the optimal policy for the constrained MDP is a
randomized stationary policy. Furthermore, randomization
occurs in at most one state [19]. An optimal stationary
policy ¢* may be obtained from the following procedure:

Step 1. Find an optimal solution z* = {2z}, (i,a) € £?} to
the linear program (LP):



Zz‘ec Zaea c(t,a)zia < @

Yoier 2oaec(diy = Piaj)zia = 0,5 € L
iel ZaEL Zia =1

zia > 0,0 € Lya € L.

max E Z r(1,a)ziq s.t.

1€EL aEL

Let £* ={1 € L: 2}, > 0 for some a € L}.

Step 2. Determine an optimal policy o* as follows:

forie L, o}, = Zia
{ (®)

2aeL #a
fori ¢ L*, o, =1 for some arbitrary a € L.

Note that there are several algorithms to solve LPs. The
most popular is the simplex algorithm. It has exponential
worst—case complexity, but requires a small number of itera-
tions in practice. There are other more elaborate algorithms
which have polynomial complexity, such as the projective al-
gorithm by Karmarkar [14]. LP (7) for the infinite horizon
problem consists of (L + 1)2 variables and at most L + 3
constraints. The corresponding LLP formulation for the con-
strained MDP with finite horizon N (N < co) would consist
into N x (L + 1)2 variables and N % (L 4+ 1) 4+ 1 constraints,
which is likely to increase the computational time signifi-
cantly for high values of N.

4.2 1 Layer Video

As an example, consider the particular case with 1 layer
(L = 1): scheduling consists in deciding at each decision
epoch whether to send the single layer or send nothing at
all. For this special case, we can actually derive a closed—
form expression for the optimal policy (thereby circumvent-
ing linear programming). After analysis, the Joint S+EC
optimal policy can be expressed as:

{08‘1 —a/(1-aq), ot =0 if o <1/(1+q),

otherwise.

©)

001 =1, o1 = 1+ (= 1)/(q)

The optimal average transmission rate and distortion are
given by:

(10)

if o< 1/(144),
otherwise.

*
rateg,g = @

{1 —_ qu(z —_ le)
(1 - ag)(l —q(1 —dio))

distzvg

(11)
In order to illustrate these results, consider the following

distortion matrix:
1 0
[d:i] = [0.5 0]

In Figure 4, we show the minimum average distortion dist}, 4
as a function of the maximum average transmission rate «,
for selected values of the channel success rate q. We observe
that the difference between the values of dist}, , for different
channel success rates increases with «. Indeed, for low values

(12)
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Figure 5: Worst—case increase in distortion of Dis-
joint S+EC policy, for L = 1.

of «, optimal policies are likely to send very few frames
(001 = 0 and o1y = 0), so channel losses do not have much
effect. However, for higher values of «, optimal policies send
alarge number of frames (o§; = 1 and of; = 1), so the value
of the channel success rate ¢ has higher importance.

To obtain the optimal policy for the case of Disjoint S+EC,
we solve LP (7) with dip = 1. We find that there is an infi-
nite number of optimal transmission policies, including the
previous optimal policy for Joint S+EC. The minimum ex-
pected distortion without considering EC is given by dist}, , =
1—agq; however, the achieved distortion after EC depends on
the chosen optimal policy. In Figure 5, we give the worst—
case increase in distortion after using a Disjoint S+EC op-
timal policy instead of the Joint S+EC optimal policy. We
see that using Disjoint S+EC optimal policies can be highly
detrimental to the rendered quality of the video, especially
for medium values of @ and for high channel success rates
(this has been verified for values of dig other than 0.5).

4.3 General Case of Multiple Layers
In the general case of multiple layers, we use LP (7) to solve
Prob 1. We consider the example of 3 layers given in Fig-
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Figure 6: Minimum average distortion for L = 3.

ure 2, with the same distortion values. The distortion matrix
is given by:

~

[di;] = /7. (13)

W W

- W W
— =
O O OO

Figure 6 gives the minimum average distortion dist},,, as
a function of the target transmission rate «, for different
values of channel success rate q. We observe that the curve
of dist},, as a function of a has the shape of an exponen-
tial decay: the minimum distortion decreases exponentially
with the target transmission rate. It means that high (less
conservative) distortions require the transmission of a very
small number of packets, while low distortions require to
send a very large number of packets.

We study the comparison between optimal dynamic random-
ized policies, as given by our optimization framework, and
some simple static randomized policies. We denote by simple
policy (1, p), the policy that sends alternatively ! layers, with
probability p and I — 1 layers with probability 1 — p. Simple
policy (I,1) corresponds to a static non-randomized policy
which sends ! layers for all frames of the video. Figure 7(a)
and Figure 7(b) plot, for different values of ¢, the minimum
average distortion dist},, as a function of the target trans-
mission rate o, when using a simple static policy, a Disjoint
S+EC optimal dynamic policy and a Joint S+EC optimal
dynamic policy. First, we see that, for both channel condi-
tions (g = 0.95 and ¢ = 0.8), Joint S+EC optimal dynamic
policies give the best performance for all values of the target
rate a. The increase in distortion when using Disjoint S+EC
optimal policies over Joint S+EC optimal policies can go up
to 31% and 13%, for ¢ = 0.95 and g = 0.8 respectively (this
corresponds to a = 0.6). Second, we observe that Disjoint
S+EC optimal policies give similar distortion values as sim-
ple static policies. It means that, given our distortion matrix
[di;], optimizing scheduling without considering decoder EC
gives similar performance as a very simple scheduling algo-
rithm. This shows that complex optimization procedures
for packet scheduling of streaming media can be inadequate
when not considering decoder EC. Finally, comparing both
figures, note that the difference in performance between all
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Figure 8: Simulations with L =3, ¢ = 0.9 and a = 1.5,
for video segments containing up to 5000 frames.

scheduling policies is lower for lower values of ¢q. According
to common intuition, control policies at low channel success
rates are less efficient than at high success rates.

Finally, we show simulations of our Joint S+EC optimal
policies for a target transmission rate of & = 1.5, over a
channel with success rate ¢ = 0.9. We averaged our results
over 100 channel realizations. Figure 8(a) and Figure 8(b)
plot the achieved average distortion and average transmis-
sion rate, respectively, as a function of the number of frames
of the video N (up to 5000 frames). We plot confidence in-
tervals that represent 95% of the channel runs. As we can
see on both figures, as the number of frames increases, the
achieved transmission rate and distortion averaged over all
channel realizations converge towards the target rate o and
the minimum distortion dist}, ;, respectively. For a 50 frame
segment, the convergence errors are only of 4% for both
distortion and transmission rate. However, the confidence
intervals are quite large for segments with a low number
of frames: for a 50 frame segment, the transmission rate
achieved for a given channel realization can be up to 18%
higher than «, and the distortion up to 19% higher than
disty, ;. For a 500 frame segment, this errors come down to
5% and 7%, respectively.
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Since, in common videos, most homogeneous segments are
composed of tens to thousands of frames (homogeneous seg-
ments usually correspond to video scenes [9]), we expect
that our optimization framework over an infinite horizon
will achieve a good operational performance in most cases.
For video segments composed of a few frames only, it may be
more appropriate to use finite horizon linear programming
in order to find optimal policies for each separate frame, as
mentioned at the beginning of Section 4.

5. ADDITIONAL QUALITY CONSTRAINT

In Problem 2, we added a new quality constraint to our op-
timization framework. Specifically, besides minimizing the
average distortion, dists,g, the optimal transmission pol-
icy should also maintain an average variation in distortion
between consecutive images, varayg, below a maximum sus-
tainable value 5. As in Problem 1, we consider that the
video has infinite length. For a given scheduling policy o,
vargyg(o) is the long—run average defined by:

e = i,

Ea[z |Di — Di—1]] (14)

As for Problem 1, we analyze Problem 2 with a Markov De-
cision Process over an infinite horizon. The expected av-
erage distortion of a given frame n depends only on ac-
tion A, and on the state for the previous frame n — 1,
i.e., Xn. However, the expected average variation in dis-
tortion for frame n depends also on the value of the state
for frame n — 2, i.e.,, Xn_1. Indeed, from (14), we have
Varavg(0) = Eo[|Dn — Dn_1]], where Dp_1 is the distortion
for frame n — 1, which depends on the number of layers that
have been received for frames n — 1 and n — 2, i.e, X,, and
Xpn—1 respectively.

We consider the MDP {X,,_1, X,, Ap,n = 0,...}, where
{Xn-1,Xn} and {A,} are the state and action processes.

We define the reward and cost functions as:

ra(Xnot, Xn, An) = —E[Dn|Xn_1, Xn, An] (15)
n(Xnot1, Xn, Ap) = Apn, (16)

en(Xn1, Xn, An) = E[|Dn = Dot |[Xn—1, Xn, An]. (17)

From these definitions, Problem 2 can be rewritten as finding
an optimal policy ¢* which maximizes the long-run average
reward:

n

. 1
7}1_1)1100 ;EO[; rm(Xm—1,Xm, Am)]

" lim 00 %Ec[z:;=1 Cm(Xm—thyAm)] < a,
= %EU[ n C;'n(Xm—17Xm7Am)] S Y

m=1

(18)

which falls into the general theory of Markov Decision Pro-
cesses with multiple constraints. The optimal policy can be
found from a linear program similar to the one given for
Problem 1. Compared to Problem 1, the number of vari-
ables of the LP is increased from (L + 1)2 to (L + 1)37 and
the number of constraints from L+ 3 to I.4+4, which remains
tractable. Note that the additional constraint is expressed
as follows:
a—1
enisgsa) = (1 = (X ok — dila®) + s — digla® (19)

k=0

Figure 9(a) and Figure 9(b) show, for L = 3, the mini-
mum distortion dist},, as a function of the target rate a,
for selected values of the maximum variation in distortion
~. As we can see on both figures for low values of v, lim-
iting the variation in distortion comes with an increase in
the minimum distortion. We also observe that, for a given
channel success rate g and a given target rate «, there ex-
ists a minimum value of v from which the minimum distor-
tion stays constant. Other simulations, which are not shown
here, showed that this corresponds to the value of the aver-
age variation in distortion achieved by the optimal policy of
Problem 1, i.e., without the constraint on vargyg.



6. MPEG-4 FGS VIDEOS

Fine Granularity Scalability (FGS) is a new profile of MPEG—
4, which has been specifically standardized for transmission
of video over the Internet [1]. The FGS EL can be trun-
cated anywhere before transmission, giving the fine—grained
property. There is no motion compensation in the FGS-EL,
so that it is highly resilient to transmission errors. Accord-
ing to the MPEG group [2], because the Internet packet loss
rate is usually low (under 20%), a typical scenario for trans-
mitting MPEG-4 FGS encoded video over the Internet is to
transmit the BL with high reliability (i.e., with channel error
correction) and the FGS-EL with no error control. There-
fore, we can directly apply our optimization framework to
the FGS EL. We suppose that the BL is transmitted with-
out loss, and that the number of ELs extracted from the
FGS-EL is constant for the current video segment (this can
be determined by a coarse—grained network—adaptive algo-
rithm, such as in [8, 10]).

In our experiments, we choose the simplest strategy for
temporal error concealment, which consists in replacing the
missing layers in the current frame by the corresponding
layers in the previous frame. During our experiments, we
have noticed that this strategy performs well for low motion
video segments but very poorly for segments with high mo-
tion. Video segments with a fairly high amount of motion,
such as Coastguard or Foreman, would require an error con-
cealment strategy which compensates for motion. For exam-
ple, [4] presents a scheme for error-concealment in the FGS
layer, which uses, together with the layers from the previous
frame, the motion information contained in the BL of the
current frame. Since we suppose that the BL is transmitted
without loss, such a strategy would be easily applicable to
our system.

We present experiments with the low motion segment Akiyo.
We used the Microsoft MPEG—4 software encoder/decoder [7]
with FGS functionality. We encode the video into a VBR-
BL, with average bitrate of 36 kbps, and a FGS EL with
average bitrate of 900 kbps. We cut the FGS-EL into 3 lay-
ers of equal size (L = 3). The video segment is encoded
into the CIF format (352 x 288 pixels), at a frame rate of
30 frames/sec. It contains N = 300 frames. In order to
prevent too much fluctuations in quality between successive
frames, the first BL. frame is encoded as an I-picture and
all following frames as P pictures. (We noticed that our
VBR BL-encoder could give important variations in quality
between the different types of frames [9], which would be
certainly smoothed by a better encoder.)

Figure 10 shows, for different reception states (Xn, Xn41),
the PSNR of frame n after error concealment, for n between
100 to 150. Recall that X,+1 denotes the number of layers
which are available for frame n. We verify that, for a given
number of received layers for frame n, the PSNR of frame n
increases with X,. This shows that temporal error conceal-
ment is effective in increasing the quality of the rendered
video. The increase in quality can be highly significant for
some frames. For example, for frame 120, replacing the first
FGS EL of the current frame by the first EL from the pre-
vious frame can improve the quality by almost 2 dB (when
X121 = 0, the PSNR of frame 120 goes from 33.2 dB when
X120 =0 to 35 dB when Xlgo = 1)

-+ 3,0
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Figure 10: PSNR of frames 100 to 150 of Akiyo after
EC, for different receiver states (X,, Xnt1).

Figure 11 shows a zoomed part of decoded frame 140 after
error concealment when no EL was received for frame 140
nor for frame 139 (left), no EL was received for frame 140
but all 3 layers of frame 139 were received (middle), and
when all 3 layers of frame 140 were received (right). As
we can see, the overall quality of frame 140 is better when
all layers of the previous frame have been received (middle
picture) than when no layer is available at the receiver for
the previous frame (left picture). However, the quality is still
lower than when all layers of frame 140 have been received
and decoded (right picture).

We computed the average distortion over all frames of the
video segment for all possible receiver states. After normal-
izing, we obtained the following distortion matrix for Akiyo:

1 057 0.20
[ Towige = 0.64 0.57 0.20
ilakiye = 1933 0,52 0.20
0.15 0.32 0.03

(20)

OO OO0

Note that da; > dzo and d3; > dag. This means that re-
placing all layers from the current frame by layers from the
previous frame achieves a lower distortion (better quality)
than using the first layer of the current frame and the subse-
quent layers of the previous frame. This is due to our simple
temporal EC strategy. Since we did not implement any mo-
tion compensation for EC, the replacement of layers of the
current frame by layers of the previous frame create some
visual impairments. These impairments are usually minor
for low—motion video segments. However, for frames which
are significantly different from the previous frames, the re-
sulting increase in distortion can be slightly higher than the
decrease in distortion brought by error concealment.

Figure 12(a) and Figure 12(b) show, for Problem 1, the max-
imum average quality in PSNR as a function of the target
rate «, for Joint and Disjoint S+EC optimal policies, as well
as simple policies. As in section 4.3, the maximum quality
achieved by Disjoint S+EC optimal policies and simple poli-
cies is similar, while Joint S+EC optimal policies achieve the
best quality for all target rates. The gain brought by jointly
optimizing scheduling and error concealment is up to 1.5 dB
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quality in PSNR transmission rate
target | average | min. target | average | max.
a=1.0 | 35.69 35.71 35.48 1.00 1.01 1.05
a=15| 36.63 36.64 36.36 1.50 1.51 1.62
a=2.0| 37.15 37.14 36.93 2.00 2.01 2.12

Table 1: Simulations with ¢ = 0.9

for a channel with a high success rate (¢ = 0.95). We expect
the difference in quality between Joint and Disjoint S+EC
optimal policies to be even higher with error concealment
schemes that compensate for motion, notably by using the
BL information.

Finally, Table 1 presents the results of simulations over 100
realizations of a packet erasure channel with success rate
q = 0.9. We show, for different values of the average target
transmission rate «, the achieved quality in PSNR and the
transmission rate, averaged over all channel realizations. We
also show the minimum quality and maximum transmission
rate, which are achieved by one channel realization. As we
can see, the average achieved values are very close to the
target values. This shows that applying our infinite-horizon
optimization framework to finite-length videos gives very
good performance. In this example, the difference between
the minimum achieved PSNR and the target quality is al-
ways lower than 0.3 dB. The difference between the maxi-
mum achieved transmission rate and the target transmission
rate is always lower than 8%.

7. CONCLUSION

In this paper, we have proposed a new optimization frame-
work for joint packet scheduling and error concealment of
layered—video (Joint S+EC). We used results on constrained
Markov Decision Processes over an infinite horizon, to com-
pute optimal policies with very low complexity and for a
wide range of quality metrics.

We analyzed the problem of minimizing the average distor-
tion under a limited transmission rate. Our analysis leads
to a low—complexity algorithm, based on Linear Program-
ming. We showed the potential quality gain brought by
Joint S+EC optimization over Disjoint S+EC optimization.
We did numerical simulations over a packet—erasure channel
with instant feedback, in order to assess the performance
of our optimization framework for finite-length videos. We
have seen that our method fits particularly well to video seg-
ments composed of hundreds of video frames. We showed
that our framework allows to accommodate additional qual-
ity metrics other than the average distortion, such as the
variation in distortion between consecutive images, with no
much increase in computational complexity. Finally, we
have evaluated the performance of our optimization frame-
work in the context of streaming MPEG—4 FGS videos.

In future work, we plan to extend our framework to a net-
work model with delayed feedback and bursty errors. Also,
we will investigate jointly optimizing scheduling and channel
error correction, by using FEC codes as additional layers.

8. REFERENCES
[1] ISO/IEC JTC1/5C29/W(G11 Information Technology —
Generic Coding of Audio—Visual Objects : Visual ISO/IEC
14496-2 / Amd X, December 1999.

10

[2] ISO/IEC JTC1/8C29/WG11 N4791 — Report on
MPEG-/ Visual Fine Granularity Scalability Tools
Verification Tests, May 2002.

[3] E. Altman. Constrained Markov Decision Processes.
Chapman and Hall, 1999.

[4] H. Cai, G. Shen, F. Wu, S. Li, and B. Zeng. Error
Concealment for Fine Granularity Scalable Video
Transmission. In Proc. of IEEE ICME, pages 145-148,
Lausanne, Switzerland, September 2002.

[5] P. A. Chou and Z. Miao. Rate-Distortion Optimized
Sender-Driven Streaming over Best—Effort Networks. In
Workshop on Multimedia Signal Processing, pages 587-592,
October 2001.

[6] P. A. Chou and Z. Miao. Rate-Distortion Optimized
Streaming of Packetized Media. submitted to IEEE
Transactions on Multimedia, February 2001.

[7] Microsoft Corp. ISO/IEC 14496 Video Reference Software.
Microsoft-FDAM1-2.3-001213.

[8] P. de Cuetos, P. Guillotel, K. W. Ross, and D. Thoreau.
Implementation of Adaptive Streaming of Stored MPEG-4
FGS Video. In Proc. of IEEE ICME, pages 405—408,
Lausanne, Switzerland, August 2002.

[9] P. de Cuetos, M. Reisslein, and K. W. Ross. Streaming
FGS-Encoded Video: Insights from a Large Library of
Rate—Distortion Traces. Submitted
(http://www.eurecom.fr/ decuetos), December 2002.

P. de Cuetos and K. W. Ross. Adaptive Rate Control for
Streaming Stored Fine-Grained Scalable Video. In Proc. of
NOSSDAYV, pages 3—-12, Miami, Florida, May 2002.

C. Derman. Finite State Markovian Decision Processes.
Academic Press, New York, 1970.

U. Horn, K. Stuhlmuller, M. Link, and B. Girod. Robust
Internet Video Transmission Based on Scalable Coding and
Unequal Error Protection. Signal Processing: Image
Communication, 15:77-94, 1999.

L. C. M. Kallenberg. Linear Programming and Finite
Markovian Control Problems. Mathematisch Centrum,
Amsterdam, 1983.

N. Karmarkar. A New Polynomial Time Algorithm for
Linear Programming. Combinatorica, (4):373-395, 1984.

Z. Miao and A. Ortega. Expected Run—time Distortion
Based Scheduling for Delivery of Scalable Media. In Proc.
of International Conference of Packet Video, Pittsburg,
PA, April 2002.

M. Podolsky, M. Vetterli, and S. McCanne. Limited
Retransmission of Real-Time Layered Multimedia. In IEEE
Workshop on Multimedia Signal Processing, pages 591-596,
Los Angeles CA, December 1998.

R. Rejaie, D. Estrin, and M. Handley. Quality Adaptation
for Congestion Controlled Video Playback over the
Internet. In Proc. of ACM SIGCOMM, pages 189—200,
Cambridge, September 1999.

R. Rejaie and A. Reibman. Design Issues for Layered
Quality-Adaptive Internet Video Playback. In Proc. of the
Workshop on Digital Communications, pages 433-451,
Taormina, Italy, September 2001.

K. W. Ross. Randomized and Past—Dependent Policies for
Markov Decision Processes With Multiple Constraints.
Operations Research, 37(3):474-477, May—June 1989.

S. D. Servetto. Compression and Reliable Transmission of
Digital Image and Video Signals. PhD thesis, University of
Illinois, May 1999.

Y. Wang and Q. Zhu. Error Control and Concealment for
Video Communications: A Review. Proc. of the IEFE,
86(5):974-997, May 1998.

Q. Zhang, W. Zhu, and Y-Q. Zhang. Resource Allocation
for Multimedia Streaming over the Internet. IEEE
Transactions on Multimedia, 3(3):339-335, September
2001.

10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]



